Please wait a minute...
金属学报  2010, Vol. 46 Issue (6): 695-700    DOI: 10.3724/SP.J.1037.2009.00782
  论文 本期目录 | 过刊浏览 |
Al-Pb偏晶合金连续凝固过程模拟
李海丽1;赵九洲2
1.沈阳理工大学兵器科学技术研究中心; 沈阳 110159
2.中国科学院金属研究所; 沈阳 110016
MODELLING AND SIMULATION OF THE MICROSTRUC- TURE FORMATION IN A STRIP CAST Al–Pb ALLOY
LI Haili1;ZHAO Jiuzhou2
1.Weaponry Science Technology Research Center; Shenyang Ligong University; Shenyang 110159
2.Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

李海丽 赵九洲. Al-Pb偏晶合金连续凝固过程模拟[J]. 金属学报, 2010, 46(6): 695-700.
, . MODELLING AND SIMULATION OF THE MICROSTRUC- TURE FORMATION IN A STRIP CAST Al–Pb ALLOY[J]. Acta Metall Sin, 2010, 46(6): 695-700.

全文: PDF(582 KB)  
摘要: 

建立了偏晶合金连续凝固过程的群体动力学模型, 并将其与传热、传质和流场控制方程相耦合, 对Al--Pb偏晶合金连续凝固过程进行了模拟, 分析了凝固速率、合金成分和熔炼温度等对合金连续凝固组织形成过程的影响. 结果表明: 凝固速率越大, 凝固界面前沿弥散相液滴的形核位置越靠近凝固界面, 弥散相液滴的形核率和数量密度越大, 平均半径越小, 越有利于获得弥散凝固组织; 合金Pb含量越高, 凝固界面前沿弥散相液滴的形核位置越远离凝固界面, 弥散相液滴的形核率越低, 平均半径越大, 越不利于获得弥散凝固组织. 熔炼温度越高, 弥散相液滴的数量密度越大, 平均半径越小, 有利于获得弥散组织; 但随熔炼温
度提高, 液滴的综合运动速度逐渐降低, 该速度降为负值时, 合金不能实现稳态凝固, 导致偏析组织的形成.

关键词 偏晶合金 液-液相变 凝固 模拟    
Abstract

When a single–phase liquid is cooled into the miscibility gap, it decomposes into two liquid phases. Generally the liquid–liquid phase transformation causes the formation of a solidification microstructure with serious phase segregation. Many efforts have been made to use the liquid–liquid demixing phenomenon for the production of the finely dispersed metal–metal composite materials. It is demonstrated that the only effective method of preventing the formation of the microstructure with heavy phase segregation in monotectic alloys is using the rapid solidification processing techniques. Strip casting may have great potentials in the manufacturing of the bulk materials of this kind of alloys. In this paper, a model was developed to describe the microstructure formation in a strip cast monotectic alloy based on the population dynamic method. The model takes into account the concurrent actions of the nucleation, diffusional growth and motions of the minority phase droplets. The model was nmerically solved together with the controlling equations for the heat transfer, mass transport and momentum transfer to studthe microstructure development in the strip cast Al–Pb alloys. The effects of alloy composition, solidification velocity and melting temperature on the microstructure formation were investigated. The results indicate that with the increase of the solidification velocity, the nucleation position of the minority phase droplets moves towards the solidification interface, the nucleation rate and number density of droplets increase and the average droplet size decreases. All these are favorable for the formation of a well dispersed microstructure. With the increase of the Pb content,  the nucleation position of the minority phase droplets moves away form the solidification interface, the nucleation rate decreases, and the average droplet size increases. These are against the formation of a well dispersed microstructure. With the increase of the melting temperature, the nucleation rate and number density of droplets increase and the average droplet size decreases. These are favorable for the formation of a well dispersed microstructure. But the velocity of the minority phase droplets decreases with the increase of the melting temperature. When the velocity of droplets is negative, samples can not obtain steady state solidification and result in the formation of a microstructure with massive segregation.

Key wordsmonotectic alloy    liquid-liquid transformation    solidification    modeling and simulation
收稿日期: 2009-11-24     
基金资助:

国家自然科学基金项目50771097和u0837601资助

作者简介: 李海丽, 女, 1979年生, 讲师, 博士

[1] Pratt G C. Int Met Rev, 1973; 18: 62
[2] Zhao J Z, Kolbe M, Li H L, Gao J R, Ratke L. Metall Mater Trans, 2007; 38A: 1162
[3] Ozawa S, Motegi T. Mater Lett, 2004; 58: 2548
[4] Cao C D, Wei B B. J Mater Sci Technol, 2002; 18: 73
[5] Fujii H, Kitaguchi H, Kumakura H, Togano K. J Mater Sci, 1995; 30: 3429
[6] Cui H B, Guo J J, Su Y Q, Wu S P, Li X Z, Fu H Z. Acta Metall Sin, 2007; 43: 907
(崔红保, 郭景杰, 苏彦庆, 吴士平, 李新中, 傅恒志. 金属学报, 2007; 43: 907)
[7] Carlberg T, Fredriksson H. Metal Trans, 1980; 11A: 1665
[8] Huang Z. Scr Metall, 1991; 24: 149
[9] Kamio A, Kumai S, Tezuka H. Mater Sci Eng, 1991; A146: 105
[10] Prinz B, Romero A, Ratke L. J Mater Sci, 1995; 30: 4715
[11] He J, Zhao J Z, Li H L, Zhang X F, Zhang Q X. Metall Mater Trans, 2008; 39A: 1174
[12] Wecker J, Hehnolt R, Schulta L, Samwer K. Appl Phys Lett, 1993; 52: 1985
[13] Kolbe M, Brillo J, Egry I. Microgravity Sci Technol, 2006; 18: 174
[14] Li H L. PhD Thesis, Institute of Metal Research, Chinese Academy of ciences, Shenyang, 2009
(李海丽. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[15] Granasy L, Ratke L. Scr Mater, 1993; 28: 1329
[16] Li H L, Zhao J Z, Zhang Q X, He J. Metall Mater Trans, 2008; 39A: 3308
[17] Rogers J R, Davis R H. Metall Trans, 1990; 2A: 59
[18] Thieringer W K. Acta Metall, 1985; 33: 1973
[19] Tao W Q. Numerical Heat Transfer. Xi’an: Xi’an Jiaotong University Press, 1988: 349
(陶文铨. 数值传热学. 西安: 西安交通大学出版社, 1988: 349)
[20] Patankar S V, Translated by Zhang Z. Numerical Heat Transfer and Fluid Flow. Beijing: Science Press, 1984: 27
(Patankar S V, 张 政译. 传热与流体流动计算. 北京: 科学出版社, 1984: 27)
[21] Li H L, Zhao J Z. Appl Phys Lett, 2008; 92: 241902

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[7] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[8] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[9] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[10] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[11] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[12] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[13] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[14] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[15] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.