Please wait a minute...
金属学报  2010, Vol. 46 Issue (3): 282-287    DOI: 10.3724/SP.J.1037.2009.00643
  论文 本期目录 | 过刊浏览 |
基于马氏体区域化形成的免训练铸造Fe-Mn-Si-Cr-Ni形状记忆合金 I. 构想与实现
彭华备; 刘刚; 文玉华; 孙盼盼; 李宁
四川大学制造科学与工程学院; 成都 610065
A TRAINING-FREE CAST Fe-Mn-Si-Cr-Ni SHAPE MEMORY ALLOY BASED ON FORMATION OF MARTENSITE IN A DOMAIN MANNER I. Idea and realization
PENG Huabei; LIU Gang; WEN Yuhua; SUN Panpan; LI Ning
College of Manufacturing Science and Engineering; Sichuan University; Chengdu 610065
引用本文:

彭华备 刘刚 文玉华 孙盼盼 李宁. 基于马氏体区域化形成的免训练铸造Fe-Mn-Si-Cr-Ni形状记忆合金 I. 构想与实现[J]. 金属学报, 2010, 46(3): 282-287.
, , , , . A TRAINING-FREE CAST Fe-Mn-Si-Cr-Ni SHAPE MEMORY ALLOY BASED ON FORMATION OF MARTENSITE IN A DOMAIN MANNER I. Idea and realization[J]. Acta Metall Sin, 2010, 46(3): 282-287.

全文: PDF(888 KB)  
摘要: 

利用Fe-Mn-Si基合金凝固过程中固态转变残留的条状δ铁素体对奥氏体晶粒进行区域化分割, 实现应力诱发ε马氏体的区域化形成, 提高了合金的形状记忆效应. 根据Hammar铬镍当量公式制备了铬镍当量比为1.85的铸态Fe-18Mn-5.5Si-9.5Cr-4Ni合金. 利用OM和VSM(振动样品磁强计)研究了合金的室温组织和磁性能. 结果表明, 在铸态Fe-18Mn-5.5Si-9.5Cr-4Ni合金的室温组织中获得了条状δ铁素体. 这些条状δ铁素体将奥氏体晶粒分割成了若干小区域, 变形时能约束不同区域应力诱发ε马氏体的扩展, 使其以区域化的方式形成. 由于应力诱发ε马氏体的区域化形成减少了不同区域马氏体之间的碰撞, 在未经任何处理的铸态Fe-18Mn-5.5Si-9.5Cr-4Ni合金中获得了4.9%的可恢复变形量.

关键词 Fe-Mn-Si-Cr-Ni形状记忆合金免训练 铸造δ铁素体    
Abstract

Low cost Fe-Mn-Si based shape memory alloys (SMAs) has not got widely applications because of their poor shape memory effect (SME) and the need of thermo-mechanical training, so developing training-free Fe-Mn-Si based SMAs with high memory property is significant. In the present study, it was put forth that the formation of stress-induced ε martensite in a domain manner could improve the SME of Fe-Mn-Si based SMAs and it could be realized through subdividing austenite γ grains into smaller domains using the residual lathy δ ferrite phase. According to Hammar's equivalents, a cast Fe-18Mn-5.5Si-9.5Cr-4Ni alloy with Cr/Ni equivalent ratio of 1.85 was prepared. OM and VSM (vibrating sample magnetometer) examination showed that the as-cast microstructure consists of γ austenite and lathy δ ferrite phase, and the lathy δ ferrite subdivided the austenite grains into smaller domains, which makes the stress-induced ε martensite bands form in a domain manner. Because the collisions between domain-like martensite bands were reduced, a high recovery strain of 4.9% was attained in the as-cast Fe-18Mn-5.5Si-9.5Cr-4Ni alloy. This result provides a novel way of developing training-free Fe-Mn-Si based SMAs. It can be expected that the SME of cast Fe-Mn-Si based SMAs will be further improved through modifying and optimizing alloy compositions, solidification parameters and heat treatment process.

Key wordsFe-Mn-Si-Cr-Ni shape memory alloy    training-free    cast    &delta    ferrite
收稿日期: 2009-09-24     
基金资助:

国家自然科学基金项目50501015和50871072以及新世纪优秀人才支持计划项目NCET--06--0793资助

作者简介: 彭华备, 男, 1984年生, 博士生

[1] Sato A, Chishima E, Soma K, Mori T. Acta Metall Mater, 1982; 30: 1177
[2] Sato A, Chishima E, Soma K, Mori T. Acta Metall Mater, 1984; 32: 539
[3] Sato A, Yamaji Y, Mori T. Acta Metall Mater, 1986; 34: 287
[4] Otsuka H, Yamada H, Maruyama T, Tanahashi H, Matsuda S, Murakami M. ISIJ Int, 1990; 30: 674
[5] Yang J H, Chen H, Wayman C M. Metall Mater Trans, 1992; 23A: 1431
[6] Inagaki H. Z Metall, 1992; 83: 90
[7] Wang X X, Zhao L C. Scr Mater Metall, 1992; 26: 1451
[8] Wang D F, Chen Y R, Gong F Y, Liu D Z, Liu W X. J Phys France IV, 1995; 5: 527
[9] Kajiwara S. Mater Sci Eng, 1999; A273–275: 67
[10] Matsumura O, Furusako S, Sumi T, Furukawa T, Otsuka H. Mater Sci Eng, 1999; A272: 459
[11] Sato A, Masuya T, Morishita M, Kumai S, Inoue A. Mater Sci Forum, 2000; 327–328: 223
[12] Wang D F, Liu D Z, Dong Z Z, Liu W X, Chen J M. Mater Sci Eng, 2001; A315: 174
[13] Wen Y H, Yan M, Li N. Scr Mater, 2004; 50: 835
[14] Wen Y H, Yan M, Li N. Scr Mater, 2004; 50: 441
[15] Baruj A, Kikuchi T, Kajiwara S, Shinya N. Mater Sci Eng, 2004; A378: 333
[16] Farjami S, Hiraga K, Kubo H. Acta Mater, 2005; 53: 419
[17] Wen Y H, Zhang W, Li N. Acta Metall Sin, 2006; 42: 1217
(文玉华, 张伟, 李宁. 金属学报, 2006; 42: 1217)
[18] Wen Y H, Zhang W, Li N, Peng H B, Xiong L R. Acta Mater, 2007; 55: 6526
[19] Wen Y H, Xiong L R, Li N, Zhang W. Mater Sci Eng, 2008; A474: 60
[20] Yang J H, Wayman C M. Acta Metall Mater, 1992; 40: 2011
[21] Inagaki H. Z Metall, 1992; 83: 97
[22] Inagaki H. Z Metall, 1992; 83: 304
[23] Suutala N, Takalo T, Moisio T. Metall Mater Trans, 1979; 10A: 512
[24] Leone G L, Kerr H W. Weld J, 1982; 61: 13
[25] Suutala N. Metall Mater Trans, 1982; 13A: 2121
[26] Stanford N, Dunne D P. J Mater Sci, 2006; 41: 4883
[27] Bergeon N, Guenin G, Esnouf C. Mater Sci Eng, 1998; A242: 77
[28] Gu Q, Humbeeck J V, Delaey L. J Phys France IV, 1994; 4: 135
[29] Folkhard E. Welding Metallurgy of Stainless Steel. Wien: Springer–Verlag, 1988: 39

[1] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[2] 孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
[3] 汪东红, 孙锋, 疏达, 陈晶阳, 肖程波, 孙宝德. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58(1): 89-102.
[4] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[5] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[6] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[7] 王光东, 田妮, 何长树, 赵刚, 左良. DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成[J]. 金属学报, 2018, 54(7): 1059-1067.
[8] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[9] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[10] 廖敦明, 曹流, 孙飞, 陈涛. 铸造宏观过程数值模拟技术的研究现状与展望[J]. 金属学报, 2018, 54(2): 161-173.
[11] 张健, 楼琅洪. 铸造高温合金研发中的应用基础研究[J]. 金属学报, 2018, 54(11): 1637-1652.
[12] 李军, 王军格, 任凤丽, 葛鸿浩, 胡侨丹, 夏明许, 李建国. 基于成分均匀化的层状铸造方法的实验与模拟研究[J]. 金属学报, 2018, 54(1): 118-128.
[13] 孙文,秦学智,郭建亭,楼琅洪,周兰章. 铸造镍基高温合金中初生MC碳化物的退化过程和机理*[J]. 金属学报, 2016, 52(4): 455-462.
[14] 丁贤飞,刘东方,郑运荣,冯强. B微合金化对HK40合金铸造疏松的影响[J]. 金属学报, 2015, 51(9): 1121-1128.
[15] 邵珩,李岩,南海,许庆彦. 熔模铸造条件下Ti6Al4V合金铸件与陶瓷型壳间界面换热系数研究*[J]. 金属学报, 2015, 51(8): 976-984.