Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 976-984    DOI: 10.11900/0412.1961.2015.00037
  本期目录 | 过刊浏览 |
熔模铸造条件下Ti6Al4V合金铸件与陶瓷型壳间界面换热系数研究*
邵珩1,李岩2,南海2,许庆彦1()
2 北京航空材料研究院, 北京 100095
RESEARCH ON THE INTERFACIAL HEAT TRANSFER COEFFECIENT BETWEEN CASTING AND CERAMIC SHELL IN INVESTMENT CASTING PROCESS OF Ti6Al4V ALLOY
Heng SHAO1,Yan LI2,Hai NAN2,Qingyan XU1()
1 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2 Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

邵珩,李岩,南海,许庆彦. 熔模铸造条件下Ti6Al4V合金铸件与陶瓷型壳间界面换热系数研究*[J]. 金属学报, 2015, 51(8): 976-984.
Heng SHAO, Yan LI, Hai NAN, Qingyan XU. RESEARCH ON THE INTERFACIAL HEAT TRANSFER COEFFECIENT BETWEEN CASTING AND CERAMIC SHELL IN INVESTMENT CASTING PROCESS OF Ti6Al4V ALLOY[J]. Acta Metall Sin, 2015, 51(8): 976-984.

全文: PDF(1438 KB)   HTML
摘要: 

建立了Ti6Al4V合金铸件/铸型界面换热系数(h)的一维反算模型, 从数学及数值模拟的角度研究了型壳热物性参数和热电偶定位等参数对h计算的影响, 分析了不同参数影响的不同特点, 据此对型壳热物性参数和热电偶定位位置等进行了修正, 提高了h反算精度. 修正计算参数后的反算结果表明, Ti6Al4V合金熔模铸造条件下, h的变化可分为4个阶段: (1) 铸件为液态, h维持约440 W/(m2K); (2) 铸件表面生成完整凝固层, 此阶段h下降近60%; (3) 凝固层不断增厚至铸件凝固, 此阶段h下降接近峰值的20%; (4) 铸件凝固后, h随温度缓慢下降. 在三维模型中对反算得到的h进行了验证, 得到的模拟温度与实测温度基本吻合, 表明反算得到的h较为准确, 可以应用于Ti6Al4V合金熔模铸造过程的数值模拟中.

关键词 钛合金熔模铸造界面换热系数    
Abstract

Investment casting process is an important way to get complex parts of titanium alloy. However there are few research on the interfacial heat transfer coefficient (h) between casting and shell thus the temperature simulation of investment casting process of titanium alloy is often inaccurate. In order to get a relatively accurate h, a one-dimensional mathematical model for the reverse calculation of h between casting and shell in investment casting process of Ti6Al4V alloy was built and the analytic relationship between temperature and time/heat flux was established. Considering the calculated h is significantly affected by the error of parameters such as the specific heat capacity and thermal diffusivity of shell and position of thermocouples, research on the error of these parameters is essential. The relationship between the error of these parameters and the temperatures in the casting and shell was studied and it was found that the effect of different kind of error on the temperature field was obviously different. An experiment based on the one-dimensional mathematical model was done and temperatures of different positions were measured. Based on the effect of different kind of error and the difference between the calculate temperature field and the measured temperatures, the proportion of effect of each kind of error was assessed. These errors were revised on the basis of the assessment, thus a relatively accurate h between the casting and shell was obtained. The relationships between h and thickness of the solidified layer on the casting/temperature at the surface of casting can be divided into 4 stages: (1) Metal was liquid and h kept about 440 W/(m2K); (2) Solid layer appeared on the surface, and h declined nearly 60%; (3) Solid layer grew up before metal became completely solid and h declined nearly 20% of its maximum; (4) After metal solidified, h declined slowly as temperature on the surface of casting dropped. These relationships were applied in a three-dimensional model for numerical simulation of the temperature field. Temperatures of different positions in casting and shell were calculated and calculated temperatures agreed with measured ones well. Thus the accuracy of h was identified and it can help solve problems in the production in investment casting process of Ti6Al4V alloy.

Key wordstitanium alloy    investment casting    interfacial heat transfer coefficient
    
基金资助:* 中欧航空科技合作项目, 欧盟第七框架项目, 国家重点基础研究发展计划项目 2011CB706801, 国家自然科学基金项目51171089和51374137, 国家重大科技计划项目2012ZX04012011, 以及国家高技术研究发展计划项目2007AA04Z141资助
图1  一维传热模型及其温度场示意图
图2  铸型型腔形状及热电偶布置示意图
图3  型壳材料比热容(c)随温度的变化
图4  Ti6Al4V合金的c和导热系数l随温度的变化
图5  实验测得铸型及铸件各处的温度
图6  反求得到的界面换热系数(h)及局部放大图
图7  假定c发生偏差时计算得到的h与模拟温度
图8  假定铸型材料热扩散率(a)发生偏差时计算得到的h与模拟温度
图9  热电偶埋入型壳位置发生偏离时反算得到的h与模拟温度
图10  反求得到的各测温点温度与实测温度对比
图11  修正铸型材料c, a和热电偶定位位置之后反求得到的h和各测温点温度与实测温度对比
图12  h随铸件表面凝固层厚度d变化的关系
图13  铸件基本凝固后h随铸件温度变化的关系
图14  根据反求得到的h 计算出的型壳和铸件温度
[1] Liu J, Yang Y, Lu D. Foundry, 2008; 57: 1155 (刘 剑, 杨 屹, 卢 东. 铸造, 2008; 57: 1155)
[2] Atwood R C, Lee P D, Curtis R V, Maijer D M. Dent Mater, 2007; 23(1): 60
[3] Liang Z J, Xu Q Y, Li J T, Li S Q, Zhang J, Liu B C, Zhong Z Y. Rare Met Mater Eng, 2003; 32: 164 (梁作俭, 许庆彦, 李俊涛, 李世琼, 张 继, 柳百成, 仲增墉. 稀有金属材料与工程, 2003; 32: 164)
[4] Guo Z P, Xiong S M, Cho S H, Choi J K. Acta Metall Sin, 2007; 43: 1149 (郭志鹏, 熊守美, 曹尚铉, 崔正吉. 金属学报, 2007; 43: 1149)
[5] Guo Z P, Xiong S M, Cho S H, Choi J K. Acta Metall Sin, 2007; 43: 1155 (郭志鹏, 熊守美, 曹尚铉, 崔正吉. 金属学报, 2007; 43: 1155)
[6] Cao Y Y, Guo Z P, Xiong S M. China Foundry, 2014; 11: 314
[7] Guo Z P, Xiong S M, Liu B C, Mei L, Allison J. Int J Heat Mass Transfer, 2008; 51: 6032
[8] Long A, Thornhill D, Armstrong C, Watson D. Appl Therm Eng, 2011; 31: 3996
[9] O'Mahoney D, Browne D J. Exp Therm Fluid Sci, 2000; 22: 111
[10] Yuan S, Bu K, Dong Y W. Foundry Technol, 2012; 33: 177 (袁 帅, 卜 昆, 董一巍. 铸造技术, 2012; 33: 177)
[11] Konrad C H, Brunner M, Kyrgyzbaev K, V?lkl R, Glatzel U. J Mater Process Technol, 2011; 211: 181
[12] Zhang W H, Xie G N, Zhang D. Exp Therm Fluid Sci, 2010; 34: 1068
[13] Dong Y W, Bu K, Dou Y Q, Zhang D H. J Mater Process Technol, 2011; 211: 2123
[14] Rafique M M A, Iqbal J. Int J Heat Mass Transfer, 2009; 52: 2132
[15] Jin H P, Li J R, Yu J, Liu S Z. Rare Met Mater Eng, 2010; 39: 767
[16] Sun Z Z, Hu H, Niu X P. J Mater Process Technol, 2011; 211: 1432
[17] Ilkhchy A F, Jabbari M, Davami P. Int Commun Heat Mass Transfer, 2012; 39: 705
[18] Aweda J O, Adeyemi M B. J Mater Process Technol, 2009; 209: 1477
[19] Xu H, Hou H, Zhao Y H, Chen Z. Chin J Nonferrous Met, 2003; 13: 881 (徐 宏, 侯 华, 赵宇宏, 陈 铮. 中国有色金属学报, 2003; 13: 881)
[20] Palumbo G, Piglionico V, Piccininni A, Guglielmi P, Sorgente D, Tricarico L. Appl Therm Eng, 2015; 78: 682
[21] Chen L P, Wang Y X, Peng L M, Fu P H, Jiang H Y. Exp Therm Fluid Sci, 2014; 54: 196
[22] Wang Z F, Yao M, Wang X D, Zhang X B, Yang L S, Lu H Z, Wang X. J Mater Process Technol, 2014; 214: 44
[23] Watanabe K, Miyakawa O, Takada Y, Okuno O, Okabe T. Biomaterials, 2003; 24: 1737
[24] Liang Z J, Xu Q Y, Li J T, Li S Q, Zhang J, Liu B C, Zhong Z Y. Rare Met Mater Eng, 2002; 31: 353 (梁作俭, 许庆彦, 李俊涛, 李世琼, 张 继, 柳百成, 仲增墉. 稀有金属材料与工程, 2002; 31: 353)
[25] Beck J V, Blackwell B, St Clair C R. Inverse Heat Conduction: Ill-Posed Problems. New York: Wiley, 1985: 145
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[4] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[7] 孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
[8] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[9] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[10] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[11] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[12] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[13] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[14] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[15] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.