Please wait a minute...
金属学报  2010, Vol. 46 Issue (4): 429-434    DOI: 10.3724/SP.J.1037.2009.00653
  论文 本期目录 | 过刊浏览 |
P92钢625℃持久性能分段特征与各段中M23C6及Laves相相参数的定量变化研究
彭志方1; 蔡黎胜1; 彭芳芳2;胡永平3; 陈方玉4
1. 武汉大学动力与机械学院; 武汉 430072
2. 东方锅炉(集团)股份有限公司材料研究所; 自贡 643001
3. 内蒙古北方重工业集团有限公司特殊钢厂; 包头 014033
4. 武汉钢铁(集团)公司研究院检测所; 武汉 430080
STUDY ON THE MULTI–SEGMENT FEATURE OF 625 ℃ CREEP–RUPTURE PROPERTY AND THE QUATITATIVE CHANGE OF PHASE PARAMETERS OF M23C6 AND LAVES PHASES IN EACH SEGMENT OF P92 STEEL
PENG Zhifang 1; CAI Lisheng 1; PENG Fangfang 2; HU Yongping 3; CHEN Fangyu 4
1. School of Power and Mechanical Engineering; Wuhan University; Wuhan 430072
2. Materials Research Department; Dong Fang Boiler Group Corp. Ltd.; Zigong 643001
3. Special Steels Plant; Inner Mongolia North Heavy Industries Group Corp. Ltd.; Baotou 014033
4. Research Institute of Wuhan Iron and Steel Company Ltd.; Wuhan 430080
引用本文:

彭志方 蔡黎胜 彭芳芳 胡永平 陈方玉. P92钢625℃持久性能分段特征与各段中M23C6及Laves相相参数的定量变化研究[J]. 金属学报, 2010, 46(4): 429-434.
. STUDY ON THE MULTI–SEGMENT FEATURE OF 625 ℃ CREEP–RUPTURE PROPERTY AND THE QUATITATIVE CHANGE OF PHASE PARAMETERS OF M23C6 AND LAVES PHASES IN EACH SEGMENT OF P92 STEEL[J]. Acta Metall Sin, 2010, 46(4): 429-434.

全文: PDF(1623 KB)  
摘要: 

研究了P92钢在625℃下加载应力与断裂时间关系曲线的分段特征以及各试样中M23C6及Laves相参数的定量变化. 结果表明, 根据该钢在625℃,110-180 MPa条件下的持久实验得到的应力-断裂时间关系曲线的变化趋势,可将该曲线分为高应力--短时段(180-150 MPa, 30-454 h)和低应力-长时段(140-110MPa, 2881-10122 h)两个特征段; 在高应力-短时段, M23C6相颗粒聚集与粗化占主导; 在低应力-长时段, Laves相及M23C6相颗粒并行聚集与粗化; 相成分、相含量及相间元素分配量(相参数)随时间及应力而变化.

关键词 P92钢 持久性能分段 M23C6 Laves相    
Abstract

In the present study, the multi–segment feature of stress vs rupture–time plot and the corresponding quatitative change of phase parameters of M23C6 and Laves in each segment were investigated for P92 steel samples subjected to 625 ℃ creep–rupture tests. The results indicate that the stress vs rupture–time plot obtained from the test results can be divided into two segments (higher stress level and shorter rupture time segment: 180—150 MPa/30—454 h, and lower stress level and longer rupture time segment: 140—110 MPa/2881—10122 h) respectively, and the microstructural evolution is closely related to the feature of each segment. In the higher stress level and shorter rupture time segment the M23C6  particles are coarsened, while in the lower stress level and longer rupture time segment both M23C6  and Laves phases are coarsened, but the latter is predominantly. The average composition, the amount and the elemental partitioning of each alloy phase called phase parameters can be determined by a multiphase separation method developed.

Key wordsP92 steel    multi-region analysis for creep-rupture property    M23C6 phase    Laves phase
收稿日期: 2009-09-27     
基金资助:

国家自然科学基金项目 50674072和东方锅炉(集团)股份有限公司2009科技项目资助

作者简介: 彭志方, 男, 1954年生, 教授, 博士

[1] Yang F. In: Chinese Society for Electrical Engineering, ed., Smposium on Sinicization of New Type Steels for 600MW/1000MW Ultra–Supercritical Units, Yang Zhou: China Electric Power Journal Net, 2009: 1
(杨富. 见: 中国电机工程学会主编, 600MW/1000MW超超临界机组新型钢国产化研讨会报告文集, 扬州: 中国电力期刊网, 2009: 1)
[2] Armaki H G, Maruyama K, Yoshizawa M, Igarashi M. Mater Sci Eng, 2008; A490: 66
[3] Maruyama K, Yoshimi K. J Press Vess Technol, 2007; 129:449
[4] Maruyama K, Lee J S, In: Shibli I A, Holdworth S R eds., Creep & Fracture in High Temperature Components–Design & Life Assessment Issues, Lancaster: DEStech Publications, 2005: 372
[5] Lee J S, Armaki H G, Maruyama K, Muraki T, Asahi H. Mater Sci Eng, 2006; A428: 270
[6] Peng Z F, Yang Z G, Yan G Z, Chen S G, Zhou Y G. In: Academic Committee of the Superalloys, CSM ed., High–Temperature Structural Materials for Power and Eergy Resource—Proceedings of 11th Annual Chinese Conference on Sueralloys, Shanghai: Metallurgical Industry Press, 2007: 666
(彭志方, 杨志刚, 阎光宗, 陈盛广, 周元贵. 见: 中国金属学会高温材料分会主编, 动力与能源用高温结构材料---第11届中国高温合金年会论文集, 上海: 冶金工业出版社, 2007: 666)
[7] Peng F F, Peng Z F, Chen F Y. In: Chinese Society for Electrical Engineering ed. Symposium on Sinicization of New Type Steels for 600MW/10MW Ultra–Supercritical Units, Yang Zhou: China Electric Power Journal Net, 2009: 178
(彭芳芳, 彭志方, 陈方玉. 见: 中国电机工程学会主编, 600MW/1000MW超超临界机组新型钢国产化研讨会报告文集, 扬州: 中国电力期刊网, 2009: 178)
[8] Peng Z F, Peng F F, Chen F Y. Electric Power Construction, 2009; 30(12): 1
(彭志方, 彭芳芳, 陈方玉. 电力建设, 2009; 30(12): 1)
[9] Peng Z F, Dang Y Y, Peng F F. Acta Metall Sin, 2010;46: 435
(彭志方, 党莹樱, 彭芳芳. 金属学报, 2010, 46: 435)
[10] Robertson D G. ECCC Data Sheets 2005. http://www.ommi. co. uk/etd/eccc/ advanced creep/index.htm
[11] Kuai C G, Peng Z F. Acta Metall Sin, 2008; 44: 897
(蒯春光, 彭志方. 金属学报, 2008; 44: 897)
[12] Maruyama K, Sawada K, Koike J. ISIJ Int, 2001; 41: 641
[13] Abe F. Sci Technol Adv Mater, 2008; 9: 15

[1] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[2] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[3] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[4] 秦高梧, 谢红波, 潘虎成, 任玉平. 一类介于晶体与准晶体之间的有序结构[J]. 金属学报, 2018, 54(11): 1490-1502.
[5] 李振亮,刘飞,袁爱萍,段宝玉,李晓伟,李一鸣. 轧制变形对喷射沉积含Nd镁合金织构及LPSO相的影响*[J]. 金属学报, 2016, 52(8): 938-944.
[6] 李克俭,蔡志鹏,李轶非,潘际銮. FB2马氏体耐热钢中Laves相在焊接过程中演化行为的研究*[J]. 金属学报, 2016, 52(6): 641-648.
[7] 马坪, 吴二冬, 李武会, 孙凯, 陈东风. Ti0.7Zr0.3(Cr1-xVx)2合金的结构和贮氢性能*[J]. 金属学报, 2014, 50(4): 454-462.
[8] 王学, 于淑敏, 任遥遥, 刘洪, 刘洪伟, 胡磊. P92钢时效的Laves相演化行为[J]. 金属学报, 2014, 50(10): 1195-1202.
[9] 王学, 李勇, 任遥遥, 刘洪伟, 刘洪, 王伟. Laves相析出对P92钢合金元素再分布的影响[J]. 金属学报, 2014, 50(10): 1203-1209.
[10] 张麦仓,曹国鑫,董建新,郑磊,姚志浩. 基于经典动态模型的GH4169合金钢锭中Laves相的回溶规律分析[J]. 金属学报, 2013, 49(3): 372-378.
[11] 盛立远,章炜,赖琛,郭建亭,奚廷斐,叶恒强. 快速凝固制备Laves相增强NiAl基复合材料的微观组织及力学性能[J]. 金属学报, 2013, 49(11): 1318-1324.
[12] 潘智平,李双明,徐磊,傅恒志. 定向凝固Cu-10.25%Mg过共晶合金中初生Laves相Cu2Mg枝晶三维形貌[J]. 金属学报, 2013, 49(1): 92-100.
[13] 王学,潘乾刚,陶永顺,章应霖,曾会强,刘洪. P92钢焊接接头IV型蠕变断裂特性[J]. 金属学报, 2012, 48(4): 427-434.
[14] 彭志方 蔡黎胜 彭芳芳 党莹樱 陈方玉. P92钢中δ铁素体对700和750℃时效析出相成分和体积分数的影响[J]. 金属学报, 2012, 48(11): 1315-1320.
[15] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.