Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 239-244    DOI: 10.3724/SP.J.1037.2009.00499
  论文 本期目录 | 过刊浏览 |
J4不锈钢及化学镀Ni-P和Ni-Cu-P镀层在液-固两相流中的冲刷腐蚀行为
方信贤; 白允强 ; 王章忠
南京工程学院材料工程学院; 南京 211167
EROSION CORROSION BEHAVIOUR OF J4 STAINLESS STEEL AND ELECTROLESS PLATING COATINGS OF Ni–P AND Ni–Cu–P IN LIQUID–SOLID TWO–PHASE FLOW
FANG Xinxian; BAI Yunqiang; WANG Zhangzhong
School of Materials Science and Engineering; Nanjing Institute of Technology; Nanjing 211167
引用本文:

方信贤 白允强 王章忠. J4不锈钢及化学镀Ni-P和Ni-Cu-P镀层在液-固两相流中的冲刷腐蚀行为[J]. 金属学报, 2010, 46(2): 239-244.
. EROSION CORROSION BEHAVIOUR OF J4 STAINLESS STEEL AND ELECTROLESS PLATING COATINGS OF Ni–P AND Ni–Cu–P IN LIQUID–SOLID TWO–PHASE FLOW[J]. Acta Metall Sin, 2010, 46(2): 239-244.

全文: PDF(5454 KB)  
摘要: 

用质量损失法系统研究了不同温度(25和50℃)和不同冲刷速率(0.63-1.88 m/s)下,J4不锈钢、Ni-P和Ni-Cu-P合金镀层, 及对比材料316L不锈钢在液-固两相流(20% H2SO4+20 g/L Al2O3)中的冲刷腐蚀行为. 结果表明:不锈钢和镀层的抗冲刷腐蚀性能由高到低依次为镀态Ni-Cu-P, 镀态Ni-P,热处理态Ni-Cu-P, 316L, J4. 提高两相流介质温度均使它们的冲刷腐蚀速率增大. 316L不锈钢在25℃液-固两相流介质中的冲刷腐蚀速率分别为镀态Ni-Cu-P, 镀态Ni-P和热处理态Ni-Cu-P镀层的8.5倍, 8倍和2.6倍以上, 而在50℃下分别为392倍, 80倍和14.8倍以上; J4不锈钢在25和50℃液-固两相流介质中的冲刷腐蚀速率分别为316L不锈钢的28倍和13倍以上. 在25和50℃, J4不锈钢分别为选择性腐蚀和均匀腐蚀, 而316L不锈钢均为轻微选择性腐蚀, Ni-P和Ni-Cu-P合金镀层均为均匀腐蚀.

关键词 Ni-Cu-PNi-P J4不锈钢 316L不锈钢 液-固两相流 冲刷腐蚀    
Abstract

Components used really in industries such as mechanical, chemical, mining and petroleum industries, are often exposed to corrosive and erosive liquid–solid two–phase flow environments. These environments lead not only to high costs maintaining these components but also to shortening their service life. The behaviors of metal materials under corrosive and erosive conditions as well as the related mechanisms have been researched for several years. For reducing material failure caused by erosion–corrosion at surfaces of components, surface modification technology such as plating an Ni–P or Ni–Cu–P alloy coating with a high hardness and good corrosion resistance is an effective method. The behaviors of electroless Ni–P and Ni–Cu–P coatings, J4 and also 316L stainless steel as a contrast material were systematically investigated in liquid–solid two–phase flow (20% H2SO4+20 g/L Al2O3) by mass loss tst method at different temperatures (25 and 50 ℃) and different erosion rates (0.63—1.88 m/s). The sample surface morphologies and chemical compositions were also observed by SEM. Their erosion corrosion mechanisms were also explained. The results show that their erosion corrosion resistance performance under the test conditions is in the order of plated Ni–Cu–P coating, plated Ni–P coating, plated Ni–Cu–P coating after heat treatment, 316L stainless steel and J4 stainless steel. Their erosion corrosion resistance decreases with the increase of temperature of two–phase flow. Comparing to plated Ni–Cu–P coating, plated Ni–P coating and plated Ni–Cu–P coating after heat treatment, stainless steel 316L has over 8.5, 8 and 2.6 times higher erosion–corrosion rate at 25 ℃and over 392, 80 and 14.8 times higher erosion–corrosion rate at 50 ℃, respectively. The erosion–corrosion rate of J4 stainless steel is ver 28 times at 25 ℃and 13 times at 50 ℃higher than that of 316L stainless steel, respectively. The main corrosion characteristic of J4 stainless steel is selectie corrosion at 25 ℃and uniform corrosion at 50 ℃. However, it is slightly selective corrosion fr 316L stainless steel and uniform corrosion for Ni–P and Ni–Cu–P coatings. The results could be used as a useful reference for the application of electroless plating Ni–P and Ni–Cu–P coatings in erosion–corrosion environment.

Key wordsNi–Cu–P    Ni–P    J4 stainless steel    316L stainless steel    liquid–solid two–phase flow    erosion and corrosion
收稿日期: 2009-07-20     
基金资助:

南京工程学院重大科研基金资助项目KXJ07073

作者简介: 方信贤, 男, 1964年生, 副教授, 博士

[1] Zheng Y G, Yao Z M, Zag Y S, Wei X Y, Ke W. Acta Metall Sin, 2000; 36: 51
(郑玉贵, 姚治铭, 张玉生, 魏翔云, 柯 \ \ 伟. 金属学报, 2000; 36: 51)
[2] Zhang A F, Xing J D, Bao C G, Jia H R. Acta Metall Sin, 2002; 38: 521
(张安峰, 邢建东, 鲍崇高, 贾焕如. 金属学报, 2002; 38: 521)
[3] Wang Z Y, Zhu J H, Wang Z Z. Acta Metall Sin, 2007; 43: 648
(王再友, 朱金华, 王章忠. 金属学报, 2007; 43: 648)
[4] Zhang A F, Wang Y Y, Xing J D, Li C J. Acta Metall Sin, 2004; 40: 411
(张安峰, 王豫跃, 邢建东, 李长久. 金属学报, 2004; 40: 411)
[5] Perry J M, Neville A, Wilson V A, Hodgkiess T. Surf Coat Technol, 2001; 137: 43
[6] Man H C, Kwok C T, Yue T M. Surf Coat Technol, 2000; 132: 11
[7] Cui Z D, Man H C, Cheng F T, Yue T M. Surf Coat Technol, 2003; 162: 147
[8] Tam K F, Cheng F T, Man H C. Surf Coat Technol, 2002; 149: 36
[9] Stack M M, Purandare Y, Hovsepian P. Surf Coat Technol, 2004; 188–189: 556
[10] Song J F, Guo K M, Zhao Z H. Chin Nonferrous Met, 1998; 8: 379
(宋锦福, 郭凯铭, 赵子辉. 中国有色金属学报, 1998; 8: 379)
[11] Abdulsalam M, Shinohara T. Corrosion, 2003; 59: 4
[12] Jargelius–Petterson F F A, Pound B G. J Electrochem Soc, 1998; 145: 1462
[13] Pardo A, Merino M C, Coy A E, Viejo F, Arrabal R, Matykina E. Corros Sci, 2008; 50780
[14] Pardo A, Merino M C, Coy A E, Viejo F, Arrabal R, Matykina E. Corros Sci, 2008; 50: 1796
[15] Kemp M, Bennekom A V, Robinson F P A. Mater Sci Eng, 1995; A199: 183
[16] Balaraju J N, Anandan C, Rajam K S. Appl Surf Sci, 2005; 250: 88
[17] Zhao F X, Liu C, Zhang Z Z, Qiu T. Mater Protect, 2006; 39: 65
(赵芳霞, 刘琛, 张振忠, 邱泰. 材料保护, 2006; 39: 65)
[18] Abdel A A, Shehata A M. Appl Surf Sci, 2009; 255: 6652

[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[3] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.
[4] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[5] 刘廷光, 夏爽, 白琴, 周邦新, 陆永浩. 孪晶界在316L不锈钢三维晶界网络中的分布特征[J]. 金属学报, 2018, 54(10): 1377-1386.
[6] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[7] 彭超, 李媛, 邓永和, 彭平. 近共晶成分Ni-P非晶合金微结构特征的原子模拟分析[J]. 金属学报, 2017, 53(12): 1659-1668.
[8] 马广璐, 崔新宇, 沈艳芳, NuriaCINCA, JosepM.GUILEMANY, 熊天英. 基体材料力学性能对316L不锈钢颗粒沉积行为的影响*[J]. 金属学报, 2016, 52(12): 1610-1618.
[9] 刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响*[J]. 金属学报, 2014, 50(1): 64-70.
[10] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
[11] 喇培清,孟倩,姚亮,周毛熊,魏玉鹏. Al元素对热轧316L不锈钢显微组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 739-744.
[12] 黄明亮,周少明,陈雷达,张志杰. Ni-P消耗对焊点电迁移失效机理的影响[J]. 金属学报, 2013, 49(1): 81-86.
[13] 曹国良 李国明 陈珊 常万顺 陈学群. 海水飞溅区Ni-Cu-P钢的锈层和耐点蚀性能研究[J]. 金属学报, 2011, 47(2): 145-151.
[14] 刘光洲 王建明 张鉴清 曹楚南. 电解法处理压载水对316L不锈钢腐蚀行为的影响[J]. 金属学报, 2011, 47(12): 1600-1604.
[15] 史永娟 任伊宾 张炳春 杨柯. 钝化处理对316L不锈钢血液相容性的影响[J]. 金属学报, 2011, 47(12): 1575-1580.