|
|
|
| 第一性原理分子动力学研究MnO对埋弧焊剂导电机制的影响 |
袁航1,2, 张燕云1,2, 王聪1,2( ) |
1 东北大学 冶金学院 沈阳 110819 2 东北大学 辽宁省厚板焊接冶金工程研究中心 沈阳 110819 |
|
| Influence of MnO upon Electrical Conductive Mechanisms of Submerged Arc Welding Fluxes: Insights from Ab Initio Molecular Dynamics Simulations |
YUAN Hang1,2, ZHANG Yanyun1,2, WANG Cong1,2( ) |
1 School of Metallurgy, Northeastern University, Shenyang 110819, China 2 Liaoning Engineering Research Centre for Thick Plate Welding Metallurgy, Northeastern University, Shenyang 110819, China |
引用本文:
袁航, 张燕云, 王聪. 第一性原理分子动力学研究MnO对埋弧焊剂导电机制的影响[J]. 金属学报, 2026, 62(1): 191-202.
Hang YUAN,
Yanyun ZHANG,
Cong WANG.
Influence of MnO upon Electrical Conductive Mechanisms of Submerged Arc Welding Fluxes: Insights from Ab Initio Molecular Dynamics Simulations[J]. Acta Metall Sin, 2026, 62(1): 191-202.
| [1] |
Wang C, Zhang J. Fine-tuning weld metal compositions via flux optimization in submerged arc welding: An overview [J]. Acta Metall. Sin., 2021, 57: 1126
|
| [1] |
王 聪, 张 进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展 [J]. 金属学报, 2021, 57: 1126
|
| [2] |
Sengupta V, Havrylov D, Mendez P F. Physical phenomena in the weld zone of submerged arc welding—A review [J]. Weld. J., 2019, 98: 283S
|
| [3] |
Liu H Y, Zhang Y Y, Zhao Y Q, et al. Unveiling the amphoteric behavior of TiO2 in fused CaF2-TiO2-MgO-SiO2 submerged arc welding fluxes [J]. Metall. Mater. Trans., 2025, 56B: 699
|
| [4] |
Bai H Y, Zhang Y Y, Zhao Y Q, et al. Numerical analysis of slag viscosity effects mechanism in submerged arc welding pool [J]. Metall. Mater. Trans., 2025, 56B: 1659
|
| [5] |
Xie X, Han S, Zhong M, et al. In situ observation of acicular ferrite growth behavior differences in weld metals subjected to varied CaF2-TiO2 flux-cored wires [J]. Metall. Mater. Trans., 2025, 56A: 7
|
| [6] |
Xie X, Wan Y B, Zhong M, et al. Optimizing microstructures and properties of electro-gas welded metals for EH36 shipbuilding steel treated by CaF2-TiO2 fluxes [J]. Acta Metall. Sin., 2025, DOI: 10.11900/0412.1961.2025.00028
|
| [6] |
谢 旭, 万一博, 钟 明 等. CaF2-TiO2焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及性能调控 [J]. 金属学报, 2025, DOI: 10.11900/0412.1961.2025.00028
|
| [7] |
Hou Y, Zhang S, Dang J, et al. Electrical conductivity and structure of CaO-MgO-SiO2-Al2O3-BaO slag with different BaO/Al2O3 molar ratios [J]. Metall. Mater. Trans., 2024, 55B: 3201
|
| [8] |
Zhang Y Y, Yuan H, Tian H Y, et al. Elucidating electrical conductive mechanisms for CaF2-SiO2-CaO-TiO2 welding fluxes [J]. Metall. Mater. Trans., 2023, 54B: 3023
|
| [9] |
Schwemmer D D, Olson D L, Williamson D L. The relationship of weld penetration to the welding flux [J]. Weld. J., 1979, 58: 153
|
| [10] |
Barati M, Coley K S. Electrical and electronic conductivity of CaO-SiO2-FeO x slags at various oxygen potentials: Part II. Mechanism and a model of electronic conduction [J]. Metall. Mater. Trans., 2006, 37B: 51
|
| [11] |
Yuan H, Wang Z J, Zhang Y Y, et al. Elucidating electrical conductive mechanisms for CaF2-SiO2-Al2O3-MgO welding fluxes in liquid and crystalline states [J]. Metall. Mater. Trans., 2024, 55B: 5068
|
| [12] |
Hou Y, Zhang G H, Lv X W. Electrical conductivity of CaO-Al2O3-SiO2 slags containing SiC particles [J]. J. Sustain. Metall., 2023, 9: 1344
|
| [13] |
Zhou L J, Wu H F, Wang W L, et al. Electrical conductivity and melt structure of the CaO-SiO2-based mold fluxes with different basicity [J]. Metall. Mater. Trans., 2022, 53B: 466
|
| [14] |
Komen H, Shigeta M, Tanaka M, et al. Numerical investigation of heat transfer during submerged arc welding phenomena by coupled DEM-ISPH simulation [J]. Int. J. Heat Mass Transfer, 2021, 171: 121062
|
| [15] |
Hu K, Lv X W, Yu W Z, et al. Electric conductivity of TiO2-Ti2O3-FeO-CaO-SiO2-MgO-Al2O3 for high-titania slag smelting process [J]. Metall. Mater. Trans., 2019, 50B: 2982
|
| [16] |
Wang C, Wang Z J, Yang J K. Revealing the viscosity-structure relationship of SiO2-MnO-CaO fluxes geared toward high heat input submerged arc welding [J]. Metall. Mater. Trans., 2022, 53B: 693
|
| [17] |
Nath S K, Randhawa N S, Kumar S. A review on characteristics of silico-manganese slag and its utilization into construction materials [J]. Resour. Conserv. Recycl., 2022, 176: 105946
|
| [18] |
Mori K. The electrical conductivity of molten slags containing titanium-oxide (I) Na2O-SiO2-TiO2 system [J]. Tetsu-to-Hagané, 1956, 42: 633
|
| [18] |
森一美. 酸化チタンを含む溶融スラッグの電気伝導度(I) Na2O-SiO2-TiO2系 [J]. 鉄と鋼,1956, 42: 633
|
| [19] |
Ge X, Lai P S, Shi C J, et al. Immiscibility in binary silicate liquids: Insight from ab initio molecular dynamics simulations [J]. Phys. Rev., 2024, 109B: 174215
|
| [20] |
Liu S Y, Wang L J, He X B, et al. Insight into the oxidation mechanisms of vanadium slag and its application in the separation of V and Cr [J]. J. Cleaner Prod., 2023, 405: 136981
|
| [21] |
Chen M H. Progress of the ABACUS software for density functional theory and its integration and applications with deep learning algorithms [J]. Acta Metall. Sin., 2024, 60: 1405
|
| [21] |
陈默涵. 密度泛函理论软件ABACUS进展及其与深度学习算法的融合及应用 [J]. 金属学报, 2024, 60: 1405
|
| [22] |
Cheng K, Chen S M, Cao S, et al. Precipitation strengthening in titanium alloys from first principles investigation [J]. Acta Metall. Sin., 2024, 60: 537
|
| [22] |
程 坤, 陈树明, 曹 烁 等. 第一性原理研究钛合金中的沉淀强化 [J]. 金属学报, 2024, 60: 537
|
| [23] |
Shen X Y, Chu R X, Jiang Y H, et al. Progress on materials design and multiscale simulations for phase-change memory [J]. Acta Metall. Sin., 2024, 60: 1362
|
| [23] |
沈雪阳, 褚瑞轩, 蒋宜辉 等. 相变存储器材料设计与多尺度模拟的研究进展 [J]. 金属学报, 2024, 60: 1362
|
| [24] |
Sun Y W, Qian G Y, Pang S, et al. Element partitioning and stabilization for impurities removal between liquid silicon and silicate melts: Ab initio insights into electronic structure [J]. J. Mol. Liq., 2024, 400: 124566
|
| [25] |
Gao L F, Liu X C, Bai J, et al. Unveiling charge compensation effects in Na2O-Al2O3-SiO2 melts: Atomic-scale mechanisms and implications for fluidity from AIMD simulations [J]. J. Phys. Chem., 2024, 128C: 17756
|
| [26] |
Zhang C, Wu T, Xia W Z, et al. Effect of alkaline oxides on aluminate slag structure by first principles calculation [J]. J. Mol. Liq., 2023, 390: 123088
|
| [27] |
Jiang C H, Li K J, Barati M, et al. The interaction mechanism between molten SiO2-Al2O3-CaO slag and graphite with different crystal orientations: Experiment and ab initio molecular dynamics simulation [J]. Ceram. Int., 2023, 49: 8295
|
| [28] |
Pang Z D, Lv X W, Yan Z M, et al. Transition of blast furnace slag from silicate based to aluminate based: Electrical conductivity [J]. Metall. Mater. Trans., 2019, 50B: 385
|
| [29] |
Boeykens P J, Bellemans I, Scheunis L, et al. Parameter investigation of the experimental methodology of electrical conductivity measurements for PbO containing slags [J]. Electrochim. Acta, 2023, 464: 142846
|
| [30] |
Kühne T D, Iannuzzi M, Del Ben M, et al. CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations [J]. J. Chem. Phys., 2020, 152: 194103
|
| [31] |
VandeVondele J, Krack M, Mohamed F, et al. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach [J]. Comput. Phys. Commun., 2005, 167: 103
|
| [32] |
Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. J. Chem. Phys., 2010, 132: 154104
|
| [33] |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
| [34] |
Yuan H, Wang Z J, Zhang Y Y, et al. Roles of MnO and MgO on structural and thermophysical properties of SiO2-MnO-MgO-B2O3 welding fluxes: A molecular dynamics study [J]. J. Mol. Liq., 2023, 386: 122501
|
| [35] |
Yuan H, Zhang Y Y, Liu H Y, et al. Bond characteristic-dependent viscosity variations in CaF2-SiO2-Al2O3-MgO welding fluxes [J]. Weld. J., 2025, 104: 107-s
|
| [36] |
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data [J]. J. Appl. Crystallogr., 2011, 44: 1272
|
| [37] |
Lu T, Chen F W. Multiwfn: A multifunctional wavefunction analyzer [J]. J. Comput. Chem., 2012, 33: 580
|
| [38] |
He X B, Ma S D, Wang L J, et al. Comparison of desulfurization mechanism in liquid CaO-SiO2 and MnO-SiO2: An ab initio molecular dynamics simulation [J]. J. Alloys Compd., 2022, 896: 163008
|
| [39] |
Wang Z, Huang S H, Yu Y, et al. Comprehensive understanding of the microstructure and volatilization mechanism of fluorine in silicate melt [J]. Chem. Eng. Sci., 2021, 243: 116773
|
| [40] |
Gong K, Özçelik V O, Yang K R, et al. Density functional modeling and total scattering analysis of the atomic structure of a quaternary CaO-MgO-Al2O3-SiO2 (CMAS) glass: Uncovering the local environment of calcium and magnesium [J]. Phys. Rev. Mater., 2021, 5: 015603
|
| [41] |
Christie J K. Clustering of fluoride and phosphate ions in bioactive glass from computer simulation [J]. Philos. Trans. Roy. Soc., 2023, 381A: 20220345
|
| [42] |
Zhang X B, Liu C J, Jiang M F. Effect of fluorine on melt structure for CaO-SiO2-CaF2 and CaO-Al2O3-CaF2 by molecular dynamics simulations [J]. ISIJ Int., 2020, 60: 2176
|
| [43] |
Yuan H, Zhang Y Y, Zhao Y Q, et al. Structural role of CaF2 upon welding flux viscosity [J]. Weld. J., 2025, 104: 164-S
|
| [44] |
Zhang C, Kong Y Q, Wu T, et al. First-principles study on microstructure of CaO-Al2O3-B2O3 slag [J]. J. Mol. Liq., 2022, 368: 120738
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|