Please wait a minute...
金属学报  2011, Vol. 47 Issue (10): 1315-1320    DOI: 10.3724/SP.J.1037.2011.00245
  论文 本期目录 | 过刊浏览 |
Al2Sr和Mg2Sr相结构稳定性与弹性性能的第一原理计算
周惦武1,刘金水2,徐少华2,彭平2
1.湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082
2.湖南大学材料科学与工程学院, 长沙 410082
FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES
ZHOU Dianwu1, LIU Jinshui2, XU Shaohua2, PENG Ping2
1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082
2.School of Materials Science and Engineering, Hunan University, Changsha 410082
引用本文:

周惦武 刘金水 徐少华 彭平. Al2Sr和Mg2Sr相结构稳定性与弹性性能的第一原理计算[J]. 金属学报, 2011, 47(10): 1315-1320.
, , , . FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES[J]. Acta Metall Sin, 2011, 47(10): 1315-1320.

全文: PDF(650 KB)  
摘要: 采用基于密度泛函理论的CASTEP和DMOL程序软件包, 计算了Mg17Al12, Al2Sr和Mg2Sr相的结构稳定性、弹性性能和电子结构. 合金形成热和结合能的计算结果显示, Al2Sr具有最强的合金化形成能力和结构稳定性.Gibbs自由能的计算结果表明, 随着温度的升高, Mg17Al12, Al2Sr和Mg2Sr的结构稳定性发生了变化, 在实际工作温度高于423 K以上时,Al2Sr的结构稳定性最好, Sr合金化Mg-Al基合金形成Al2Sr有利于提高镁合金的高温抗蠕变性能. 体模量(B)、弹性各向异性系数(A)、Young's模量(E)、剪切模量(G)和Poisson比($\nu$)的计算结果表明, Mg2Sr为延性相, 而Mg17Al12和Al2Sr为脆性相, Mg2Sr的塑性最好.态密度和Mulliken电子占据数的计算结果表明, Al2Sr结构最稳定的原因主要源于体系存在强烈的共价键作用, 而Mg17Al12结构稳定性优于Mg2Sr是体系中离子键与共价键共同作用的结果.
关键词 镁合金 第一原理计算 电子结构 结构稳定性 弹性性能    
Abstract: Structural stabilities, elastic properties and electronic structures of Mg17Al12, Al2Sr and Mg2Sr phases have been determined from first–principle calculations by using CASTEP and DMOL programs based on the density functional theory. The calculated formation heats and cohesive energies indicated that Al2Sr has the strongest alloying ability as well as the highest structural stability. The calculated Gibbs free energy showed that the structural stabilities of Mg17Al12, Al2Sr andMg2Sr change with elevated temperature, when the temperture is above 423 K, Al2Sr is more stable than Mg17Al12phase, and Sr addition to the Mg–Al base alloys can improve the creep properties. The calculated bulk modulus (B), anisotropy values (A), Young’s modulus (E), shear modulus (G) and Poisson ratio (ν) showed that Mg2Sr is ductile, on the contrary, Mg17Al12and Al2Sr are both brittle, and among the three phases Mg2Sr is a phase with the best plasticity. The calculations of the density of states (DOS) and Mulliken electronic populations showed that the reason of Al2Sr having the highest structural stability attributes to Al2Sr phase having the more covalent bonds compared with Mg17Al12 and Mg2Sr phases, while Mg17Al12 phase having more stable structure is the result of co–action of ionicand covalent bonds.
Key wordsmagnesium alloy    first–principle calculation    electronic structure    structural stability    elastic property
收稿日期: 2011-04-18     
基金资助:

教育部博士点专项科研(新教师)基金项目200805321032, 湖南省自然科学基金项目09JJ6079和湖南大学汽车车身先进设计制造国家重点实验室自主课题项目71075003资助

作者简介: 周惦武, 男, 1971年生, 教授, 博士
[1] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37

[2] Luo A, Pekguleryuz M O. J Mater Sci, 1994; 29: 5259

[3] Parvez M A, Medraj M, Essadiqi E, Muntasar A, Denes G. J Alloys Compd, 2005; 402: 170

[4] Chartrand P, Pelton A D. J Phase Equilib, 1994; 5: 591

[5] Aljarrah M, Parvez M A, Li J, Essadiqi E, Medraj M. Sci Technol Adv Mater, 2007; 8: 237

[6] Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. J Phys: Condens Matter, 2002; 14: 2717

[7] Marlo M, Milman V. Phys Rev, 2000; 62B: 2899

[8] Vanderbilt D. Phys Rev, 1990; 41B: 7892

[9] Hammer B, Hansen L B, Norkov J K. Phys Rev, 1999; 59B: 7413

[10] Franscis G P, Payne M C. J Phys: Condens Matter, 1990; 2: 4395

[11] Monkhorst H J, Pack J D. Phys Rev, 1976; 13B: 5188

[12] Duan Y H, Sun Y, Peng M J, Guo Z Z. Solid State Sci, 2011; 13: 455

[13] Min X G, Du W W, Xue F, Sun Y S. Chin Sci Bull, 2002; 47: 109

[14] Zhong Y, Sofo J O, Luo A A, Liu Z K. J Alloys Compd, 2006; 421: 172

[15] Alcock C B, Itkin V P. Bull Alloy Phase Diagrams, 1989; 10: 624

[16] Zhou DW, Liu J S, Lou Y Z, Zhang C H. Chin Nonferrous Met, 2008; 18: 118

(周惦武, 刘金水, 卢远志, 张楚惠. 中国有色金属学报, 2008; 18: 118)

[17] King R C, Kleppa O J. Acta Metall Mater, 1964; 12: 87

[18] Aljarrah M, Medraj M. Comp Coup Phase Diagrams Thermochem, 2008; 32: 240

[19] Zubov V I, Tretiakov N P, Teixeira Rabelo J N, Sanchez Ortiz J F. Phys Lett, 1995; 198A: 470

[20] Ishii Y, Fujiwara T. Non–Cryst Solids, 2002; 312–314: 494

[21] Wang N, Yu W Y, Tang B Y, Peng L M, Ding W J. J Phys, 2008; 41D: 195408

[22] Hong S Y, Fu C L. Intermetallics, 1999; 7: 5

[23] Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M. Phys Rev, 1990; 41B: 10311

[24] YuWY, Wang N, Xiao X B, Tang B Y, Peng L M, Ding W J. Solid State Sci, 2009; 11: 1400

[25] Mattesini M, Ahuja R, Johansson B. Phys Rev, 2003; 68B: 184108
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[5] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[6] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[7] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[8] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[9] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[10] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[11] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[12] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[13] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[14] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
[15] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.