Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 492-501    DOI: 10.3724/SP.J.1037.2011.00742
  论文 本期目录 | 过刊浏览 |
Al3M(M=Ti, Zr, Hf)亚稳相和平衡相的价电子结构分析
黄炼,高坤元,文胜平,黄晖,王为,聂祚仁
北京工业大学材料科学与工程学院, 北京 100124
VALENCE ELECTRON STRUCTURE ANALYSIS OF EQUILIBRIUM AND METASTABLE PHASES OF Al3M(M=Ti, Zr, Hf)
HUANG Lian, GAO Kunyuan, WEN Shengping, HUANG Hui, WANG Wei, NIE Zuoren
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
引用本文:

黄炼,高坤元,文胜平,黄晖,王为,聂祚仁. Al3M(M=Ti, Zr, Hf)亚稳相和平衡相的价电子结构分析[J]. 金属学报, 2012, 48(4): 492-501.
. VALENCE ELECTRON STRUCTURE ANALYSIS OF EQUILIBRIUM AND METASTABLE PHASES OF Al3M(M=Ti, Zr, Hf)[J]. Acta Metall Sin, 2012, 48(4): 492-501.

全文: PDF(633 KB)  
摘要: 本文运用固体与分子经验电子理论(EET)计算了Al3M(M=Ti, Zr, Hf)的3种晶体结构(L12, D022, D023)的价电子结构和最强键键能, 并依此对各种结构的相稳定性及相变顺序做半定量分析. 结果显示: 各平衡相, 即D022-Al3Ti, D023-Al3Zr 和D022-Al3Hf, 其最强键键能分别为57.7, 71.6和 75.6 kJ/mol, 与对应平衡相的熔点高低次序一致, 确认了EET计算结果的可靠性. 使用这一方法计算获得Al3Ti, Al3Zr 和Al3Hf的最强键键能, 依此得出各亚稳相向平衡相的转变顺序与实验结果及第一性原理计算的结果相同. EET计算的最强键键能可作为评价亚稳相稳定性的一个判据. 据此, 由计算获得 L12型Al3M最强键键能推论各相的稳定性次序为Al3Ti3Zr3Hf, 与实验所得的相稳定性次序一致, 表明最强键键能作为亚稳相稳定性判据的正确性.
关键词 价电子结构Al3M(M=Ti, Zr, Hf)亚稳相相的稳定性    
Abstract:The valence electron structure of Al3M(M=Ti, Zr, Hf) with three crystal structures (L12, D022, D023) and the corresponding strongest bond energy (EA) values have been calculated from the empirical electron theory (EET) of solids and molecules. Based on the calculated EA, the stability of the phases with different structures and the sequence of phase transition have been analyzed semi--quantitatively. The results showed that, the EA of the equilibrium phases, i.e., D022-Al3Ti, D023-Al3Zr and D022-Al3Hf, were 57.7, 71.6 and 75.6 kJ/mol, respectively, which showed the same trend in magnitude with the corresponding melting point. This consistence supports the reliability of EET--based calculation results. Similarly, the EAof Al3Ti, Al3Zr and Al3Hf with three structures have been calculated and the calculated phase transition sequences are the same as the experimental results and those from first--principles calculation. The L12-type metastable phases of three intermetallic compounds exhibit many excellent characteristics, whereas their phase stability is crucial for application. The EA is supposed to be a measure for the stability of metastable phase. The calculated EA of L12 structure implied the phase stability in the order of Al3Ti3Zr3Hf, which was the same as that from the transition temperatures experimentally. The EA calculated by EET, therefore, could be a good measure for the stability of metastable phase.
Key wordsvalence electron structure    Al3M(M=Ti, Zr, Hf)    metastable phase    phase stability
收稿日期: 2011-11-30     
基金资助:

国家自然科学基金项目51101001, 国家重点基础研究发展计划项目2012CB619503和高校博士学科点专项基金20091103120015资助

作者简介: 黄炼, 男, 1984年生, 硕士生
[1] Zhang Y G, Han Y F, Chen G L, Guo J T, Wan X J, Feng D. Intermetallic Compounds of Structural Materials. Beijing:International Industry Press, 2001: 833

    (张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯涤. 金属间化合物结构材料.北京: 国际工业出版社, 2001: 833)

[2] Hui L H, Geng H R, Wang S R, Xu J.  Mech Eng Mater, 2007; 31: 1

    (惠林海, 耿浩然, 王守仁, 徐杰. 机械工程材料, 2007; 31: 1)

[3] Chen G L.  Mater Rev, 2000; 24: 1

    (陈国良. 材料导报, 2000; 24: 1)

[4] Ding J J, Qin G W, Hao S M, Wang X T, Chen G L. J Phase Equilib, 1996; 17: 117

[5] Murray J, Peruzzi A, Abriata J P.  J Phase Equilib, 1992; 13: 227

[6] Okamoto H.  J Phase Equilib Diffus, 2006; 27: 538

[7] Srinivasan S, Desch P B, Schwarz R B.  Scr Metall Mater, 1991; 25: 2513

[8] Schwarz R B, Desch P B, Srinivasan S, Nash P. Nanostruct Mater, 1992; 1: 37

[9] Srinivasan S, Desch P B, Schwarz R B. In: Turchi P E A, Gonis A eds., Statics and Dynamics of Alloy Phase Transformation.New York: Plenum Press, 1994: 81

[10] Knipling K E, Dunand D C, Seidman D N.  Metall Mater Trans,2007; 38A: 2553

[11] Knipling K E, Dunand D C, Seidman D N.  Z Metallkd, 2006; 97: 246

[12] Perdew J P, Zunger A.  Phys Rev, 1981; 23B: 5048

[13] Wu Z G, Cohen R E.  Phys Rev, 2006; 73B: 235116--1

[14] Yu R H.  Chin Sci Bull, 1978; 23: 217

     (余瑞璜. 科学通报, 1978; 23: 217)

[15] Yu R H.  Chin Sci Bull, 1981; 26: 206

     (余瑞璜. 科学通报, 1981; 26: 206)

[16] Carlsson A E, Meschter P J.  J Mater Res, 1989; 4: 1060

[17] Ghosh G, Asta M.  Acta Mater, 2005; 53: 3225

[18] Kaufman L, Nesor H.  Can Metall Q, 1975; 14: 221

[19] Colinet C, Pasturel A.  Intermetallics, 2002; 10: 751

[20] Alcock C B, Jacob K T, Zador S.  At Energy Rev, 1976; 6: 1

[21] Guo J Q, Ohtera K.  Mater Lett, 1996; 27: 343

[22] Anderson O K.  Phys Rev, 1975; 12B: 3060

[23] Colinet C, Pasturel A.  J Alloys Compd, 2001; 319: 154

[24] Meschel S V, Kleppa O.  J Alloys Compd, 1993; 191: 11

[25] Colinet C, Pasturel A.  Phys Rev, 2001; 64B: 1

[26] Wen J B, Ren M H, Chen S P, Rong Y H.  J Shanghai Jiao Tong Univ,1998; 32: 73

     (文九巴, 任敏华, 陈世朴, 戎咏华. 上海交通大学学报, 1998; 32: 73)

[27] Li P J, Ye Y C, He L J.  Chin Sci Bull, 2008; 53: 1345

     (李培杰, 叶益聪, 何良菊. 科学通报, 2008; 53: 1345)

[28] Gao Y J, Zhong X P, Liu H, Wu W M.  Guangxi Sci, 2003; 10: 32

     (高英俊, 钟夏平, 刘慧, 吴伟明. 广西科学, 2003; 10: 32)

[29] Liu Z L, Li Z L, Liu W D.  Electron Structure of the Interface and Interfacial Properties. Beijing: Science Press, 2002: 7

     (刘志林, 李志林, 刘伟东. 界面电子结构与界面性能. 北京: 科学出版社, 2002: 7)

[30] Zhang R L.  Acta Sci Nat Univ Jilinensis, 1984; 3: 74

     (张瑞林. 吉林大学自然科学学报, 1984; 3: 74)

[31] Zhang R L.  The Empirical Electron Theory of Solids and Molecules.Jilin: Jilin Science and Technology Press, 1993: 268

     (张瑞林. 固体与分子经验电子理论. 吉林: 吉林科技出版社, 1993: 268)

[32] Liu Z L.  Valence Electron Structure and Composition Design of Alloy. Jilin: Jilin Science and Technology Press, 1990: 1

     (刘志林. 合金价电子结构与成分设计. 吉林: 吉林科学技术出版社, 1990: 1)

[33] Peng K, Yi M Z, Ran L P.  Acta Metall Sin, 2006; 42: 1125

     (彭可, 易茂中, 冉丽萍, 金属学报, 2006; 42: 1125)

[34] Nes E.  Acta Metall, 1972; 20: 499

[35] Ryun N.  Acta Metall, 1969: 17: 269

[36] Xu J H, Freeman A J.  Phys Rev, 1990; 41B: 12553

[37] Nicholson D M, Schneibel J H, Shelton W A.  Mater Res Soc,1991; 186: 229

[38] Emmauel C, Sanchez J M.  Phys Rev, 2002; 65B: 094105

[39] Hu G X, Cai X, Rong Y H.  Fundamentals of Materials Science.2nd Ed., Shanghai: Shanghai Jiao Tong University Press, 2003: 359

     (胡赓祥, 蔡, 戎咏华.材料科学基础. 第二版, 上海: 上海交通大学出版社, 2003: 359)

[40] Asboll K, Ryum N.  Inst Met, 1973; 101: 14

[41] Knipling K E, Dunand D C, Seidman D N.  Acta Mater, 2008; 56: 114
 
[1] 王刚 郑卓 常立涛 徐磊 崔玉友 杨锐. TiAl预合金粉末的表征和后续致密化显微组织特点[J]. 金属学报, 2011, 47(10): 1263-1269.
[2] 金涛 孙晓峰 赵乃仁 刘金来 张静华 胡壮麒. γ/γ'--αMo定向共晶合金激光快凝的微观组织研究[J]. 金属学报, 2009, 45(5): 527-535.
[3] 刘伟东; 刘志林; 屈华 . Ti-4.5Al-5Mo-1.5Cr合金增韧的价电子理论研究[J]. 金属学报, 2002, 38(12): 1246-1250 .
[4] 刘伟东; 刘志林; 屈华; 刘艳 . 高合金化β钛合金拉伸延性的价电子理论分析[J]. 金属学报, 2002, 38(10): 1037-1041 .
[5] 李明军; 薛玉芳; 宋广生 . 深过冷Fe-30Co合金中亚稳相形成与组织演化[J]. 金属学报, 1999, 35(5): 517-522 .
[6] 施忠良; 刘俊友; 顾明元; 张荻; 吴人洁 . 一种亚稳相形成的凝固过程控制方法及其特征[J]. 金属学报, 1999, 35(4): 430-432 .
[7] 朱瑞富;吕宇鹏;陈传忠;李士同;王世清;张福成. Fe-C-Mn合金奥氏体的价电子结构分析[J]. 金属学报, 1996, 32(6): 561-564.
[8] 张建民;张瑞林;余瑞璜. Fe_3Al氢脆机理的研究[J]. 金属学报, 1995, 31(7): 300-303.
[9] 李木森;傅绍丽;徐万东;张瑞林;余瑞璜. Fe_2B相价电子结构及其本质脆性[J]. 金属学报, 1995, 31(5): 201-208.
[10] 赵兴中;吴杏芳;柯俊. TiNi形状记忆合金中的亚稳相[J]. 金属学报, 1994, 30(7): 302-306.
[11] 杨文英;章守华;吕反修. 急冷凝固Ni_3Al合金中的亚稳相[J]. 金属学报, 1992, 28(2): 25-29.
[12] 郑炀曾;张福成. 合金元素及碳在Fe-Mn-Cr-C合金中的不均匀分布对γ→α′转变的影响[J]. 金属学报, 1991, 27(3): 82-85.
[13] 黄慧民;陈新民. β-钨的亚稳性质[J]. 金属学报, 1988, 24(6): 494-498.