|
|
搅拌摩擦加工改性Mg-5Zn合金的显微组织与耐腐蚀性能 |
龙飞1,2,3, 刘瞿1,2, 朱艺星1,2, 周梦然1,2, 陈高强1,2, 史清宇1,2( ) |
1 清华大学 机械工程系 北京 100084 2 清华大学 高端装备界面科学与技术全国重点实验室 北京 100084 3 河南省科学院材料研究所 河南省先进导体材料重点实验室 郑州 450046 |
|
Microstructure and Corrosion Resistance of Modified Mg-5Zn Alloy via Friction Stir Processing |
LONG Fei1,2,3, LIU Qu1,2, ZHU Yixing1,2, ZHOU Mengran1,2, CHEN Gaoqiang1,2, SHI Qingyu1,2( ) |
1 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China 2 State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China 3 Henan Key Laboratory of Advanced Conductor Materials, Institute of Materials, Henan Academy of Sciences, Zhengzhou 450046, China |
引用本文:
龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工改性Mg-5Zn合金的显微组织与耐腐蚀性能[J]. 金属学报, 2025, 61(7): 1071-1081.
Fei LONG,
Qu LIU,
Yixing ZHU,
Mengran ZHOU,
Gaoqiang CHEN,
Qingyu SHI.
Microstructure and Corrosion Resistance of Modified Mg-5Zn Alloy via Friction Stir Processing[J]. Acta Metall Sin, 2025, 61(7): 1071-1081.
1 |
Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
|
1 |
曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
|
2 |
Liu K, Lou F, Fu J J, et al. Microstructure and corrosion behaviors of as-rolled Mg-Zn-Er alloy sheets [J]. Trans. Nonferrous. Met. Soc. China, 2022, 32: 1881
|
3 |
Zhou M R, Huang X S, Morisada Y, et al. Effects of Ca and Sr additions on microstructure, mechanical properties, and ignition temperature of hot-rolled Mg-Zn alloy [J]. Mater. Sci. Eng., 2020, A769: 138474
|
4 |
Ci W J, Deng L L, Chen X H, et al. Effect of minor Ca addition on microstructure and corrosion behavior of Mg-Y-Ca alloys [J]. J. Mater. Res. Technol., 2023, 26: 7502
|
5 |
Sun C, Liu H, Wang C, et al. Anisotropy investigation of an ECAP-processed Mg-Al-Ca-Mn alloy with synergistically enhanced mechanical properties and corrosion resistance [J]. J. Alloys Compd., 2022, 911: 165046
|
6 |
Gao J H, Guan S K, Ren Z W, et al. Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid [J]. Mater. Lett., 2011, 65: 691
|
7 |
Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, R50: 1
|
8 |
Ma Z Y. Friction stir processing technology: A review [J]. Metall. Mater. Trans., 2008, 39A: 642
|
9 |
Cao G H, Liu Y X, Zhang D T, et al. Effect of aging treatment on microstructural evolution and mechanical properties of submerged friction stir processed WE43 alloy [J]. Rare Met. Mater. Eng., 2018, 47: 3179
|
9 |
曹耿华, 刘一雄, 张大童 等. 时效热处理对水下搅拌摩擦加工WE43镁合金的微观组织及力学性能的影响 [J]. 稀有金属材料与工程, 2018, 47: 3179
|
10 |
Xiao B L, Yang Q, Yang J, et al. Enhanced mechanical properties of Mg-Gd-Y-Zr casting via friction stir processing [J]. J. Alloys Compd., 2011, 509: 2879
|
11 |
Saikrishna N, Pradeep Kumar Reddy G, Munirathinam B, et al. Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy [J]. J. Magnes. Alloy., 2016, 4: 68
|
12 |
Argade G R, Panigrahi S K, Mishra R S, et al. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium [J]. Corros. Sci., 2012, 58: 145
|
13 |
Zhang W, Tan L L, Ni D R, et al. Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy [J]. J. Mater. Sci. Technol., 2019, 35: 777
doi: 10.1016/j.jmst.2018.11.025
|
14 |
Zhang S X, Zhang X N, Zhao C L, et al. Research on an Mg-Zn alloy as a degradable biomaterial [J]. Acta Biomater., 2010, 6: 626
doi: 10.1016/j.actbio.2009.06.028
pmid: 19545650
|
15 |
Lu C, Wei Z S, Huang X F, et al. Research and development of heat resistant magnesium alloy [J]. Foundry, 2005, 54: 112
|
15 |
卢 晨, 卫中山, 黄晓锋 等. 耐热镁合金的研究进展 [J]. 铸造, 2005, 54: 112
|
16 |
Cai S H, Lei T, Li N F, et al. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys [J]. Mater. Sci. Eng., 2012, C32: 2570
|
17 |
Li Y. Study on hot deformation behavior and the effects of friction stir processing on the microstructure and properties of Mg-Li alloys [D]. Jinan: Shandong University, 2022
|
17 |
李 奕. 镁锂合金热变形行为及搅拌摩擦加工对其组织与性能影响研究 [D]. 济南: 山东大学, 2022
|
18 |
Yan Z F, Wang D H, He X L, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect [J]. Mater. Sci. Eng., 2018, A723: 212
|
19 |
Baril G, Blanc C, Pebere N. AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures [J]. J. Electrochem. Soc., 2001, 148: B489
|
20 |
Liu W, Cao F, Chen A, et al. Effect of chloride ion concentration on electrochemical behavior and corrosion product of AM60 magnesium alloy in aqueous solution [J]. Corrosion, 2012, 68: 045001
|
21 |
Song G L, Atrens A. Understanding magnesium corrosion—A framework for improved alloy performance [J]. Adv. Eng. Mater., 2013, 5: 837
|
22 |
Asmussen R M, Binns W J, Jakupi P, et al. Microstructural effects on corrosion of AM50 magnesium alloys [J]. J. Electrochem. Soc., 2014, 161: C501
|
23 |
King A D, Birbilis N, Scully J R. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study [J]. Electrochim. Acta, 2014, 121: 394
|
24 |
Long F, Chen G Q, Zhou M R, et al. Simultaneous enhancement of mechanical properties and corrosion resistance of as-cast Mg-5Zn via microstructural modification by friction stir processing [J]. J. Magnes. Alloy., 2023, 11: 1931
|
25 |
Huang Y X, Wang Y B, Meng X C, et al. Dynamic recrystallization and mechanical properties of friction stir processed Mg-Zn-Y-Zr alloys [J]. J. Mater. Process. Technol., 2017, 249: 331
|
26 |
Al-Samman T. Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy [J]. Acta Mater., 2009, 57: 2229
|
27 |
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. Oxford: Pergamon Press, 1995: 127
|
28 |
Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium [J]. Mater. Sci. Eng., 2008, A490: 411
|
29 |
Zener C. Private communication to CS Smith [J]. Trans. AIME, 1949, 175: 15
|
30 |
Navazani M, Dehghani K. Fabrication of Mg-ZrO2 surface layer composites by friction stir processing [J]. J. Mater. Process. Technol., 2016, 229: 439
|
31 |
Birbilis N, Ralston K D, Virtanen S, et al. Grain character influences on corrosion of ECAPed pure magnesium [J]. Corros. Eng. Sci. Technol., 2010, 45: 224
|
32 |
Hoog C O, Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route [J]. Adv. Eng. Mater., 2008, 10: 579
|
33 |
Ralston K D, Birbilis N. Effect of grain size on corrosion: A review [J]. Corrosion, 2010, 66: 075005
|
34 |
Song D, Ma A B, Jiang J H, et al. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution [J]. Corros. Sci., 2010, 52: 481
|
35 |
Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
|
36 |
Ahmadkhaniha D, Fedel M, Sohi M H, et al. Corrosion behavior of severely plastic deformed magnesium based alloys: A review [J]. Surf. Eng. Appl. Electrochem., 2017, 53: 439
|
37 |
Xin R L, Li B, Li L, et al. Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl [J]. Mater. Des., 2011, 32: 4548
|
38 |
Pu Z, Song G L, Yang S, et al. Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy [J]. Corros. Sci., 2012, 57: 192
|
39 |
Song G L, Xu Z Q. Crystal orientation and electrochemical corrosion of polycrystalline Mg [J]. Corros. Sci., 2012, 63: 100
|
40 |
Long F, Liu Q, Chen G Q, et al. Improved corrosion resistance achieved in a friction stir processed Mg-5Zn-0.3Ca alloy with fragmented precipitates [J]. Corros. Sci., 2022, 208: 110675
|
41 |
Liu M, Qiu D, Zhao M C, et al. The effect of crystallographic orientation on the active corrosion of pure magnesium [J]. Scr. Mater., 2008, 58: 421
|
42 |
Liu Q, Ma Q X, Chen G Q, et al. Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing [J]. Corros. Sci., 2018, 138: 284
|
43 |
Cao F Y, Song G L, Atrens A. Corrosion and passivation of magnesium alloys [J]. Corros. Sci., 2016, 111: 835
|
44 |
Hamu G B, Eliezer D, Wagner L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy [J]. J. Alloys Compd., 2009, 468: 222
|
45 |
Zhang T, Shao Y W, Meng G Z, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-Relation between the microstructure and corrosion behavior [J]. Corros. Sci., 2011, 53: 1960
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|