Please wait a minute...
金属学报  2025, Vol. 61 Issue (7): 1071-1081    DOI: 10.11900/0412.1961.2023.00281
  研究论文 本期目录 | 过刊浏览 |
搅拌摩擦加工改性Mg-5Zn合金的显微组织与耐腐蚀性能
龙飞1,2,3, 刘瞿1,2, 朱艺星1,2, 周梦然1,2, 陈高强1,2, 史清宇1,2()
1 清华大学 机械工程系 北京 100084
2 清华大学 高端装备界面科学与技术全国重点实验室 北京 100084
3 河南省科学院材料研究所 河南省先进导体材料重点实验室 郑州 450046
Microstructure and Corrosion Resistance of Modified Mg-5Zn Alloy via Friction Stir Processing
LONG Fei1,2,3, LIU Qu1,2, ZHU Yixing1,2, ZHOU Mengran1,2, CHEN Gaoqiang1,2, SHI Qingyu1,2()
1 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2 State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
3 Henan Key Laboratory of Advanced Conductor Materials, Institute of Materials, Henan Academy of Sciences, Zhengzhou 450046, China
引用本文:

龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工改性Mg-5Zn合金的显微组织与耐腐蚀性能[J]. 金属学报, 2025, 61(7): 1071-1081.
Fei LONG, Qu LIU, Yixing ZHU, Mengran ZHOU, Gaoqiang CHEN, Qingyu SHI. Microstructure and Corrosion Resistance of Modified Mg-5Zn Alloy via Friction Stir Processing[J]. Acta Metall Sin, 2025, 61(7): 1071-1081.

全文: PDF(2803 KB)   HTML
摘要: 

Mg在多数服役环境(尤其含Cl⁻介质)中的耐腐蚀性能较差,含较多第二相的镁合金电偶腐蚀问题尤其突出,本工作采用3种不同轴肩直径(14、17和20 mm)的搅拌头对铸态Mg-5Zn合金进行搅拌摩擦加工(FSP)处理,研究具有不同第二相分布和晶粒特征的细晶组织的耐腐蚀性能。结果表明,FSP处理使合金中的第二相发生了不同程度的破碎和均匀分布,且随着轴肩直径增加,在固溶程度没有明显增加的前提下,第二相晶粒发生了长大,导致Mg-5Zn合金的微电偶效应增强,耐腐蚀性能逐渐降低。此外,FSP处理使Mg-5Zn合金形成了较强的(0001)基面织构,从而有利于耐腐蚀性能的提高。采用轴肩直径为14 mm的搅拌头,在转速为800 r/min、前进速率为40 mm/min及轴肩下压量为0.3 mm的FSP条件下,所制备Mg-5Zn合金的位错密度相对较低,其中的第二相被充分细化且呈均匀弥散分布状态,在3.5%NaCl溶液中的平均腐蚀电流密度相比铸态合金降低了近1个数量级。

关键词 搅拌摩擦加工第二相轴肩直径耐腐蚀性能    
Abstract

Magnesium alloy is the lightest metal structure material and has one of the highest specific strength among metals. Thus, it has great potential in many applications, such as aerospace and automobile industry, to reduce the weight of components. However, magnesium alloys have very poor corrosion resistance that hinders their industrial application. Thus, several methods have been explored to improve the corrosion resistance of magnesium alloy to promote its application in industries such as automotive, aerospace, and electronics where lightweight materials are required. In this study, friction stir processing (FSP) has been applied to modify the microstructure of Mg-5Zn alloy to increase its corrosion resistance, which is a type of magnesium alloy used widely but has relatively poor corrosion resistance. Herein, three tools with different shoulder diameters of 14, 17, and 20 mm were selected to conduct FSP on the as-cast Mg-5Zn alloy. The microstructure has been observed and corrosion behavior has been investigated. The results reveal that the coarse grains of as-cast Mg-5Zn alloy are considerably refined by FSP treatment. The grain size reduces from hundreds of micrometers to a few micrometers. Furthermore, the coarse secondary phase in as-cast alloy is broken into small particles and distributed uniformly in the base material after FSP. Additionally, strong basal plane (0001) texture and low dislocation density have been observed in these FSP-treated samples, which are beneficial for increasing the corrosion resistance of magnesium alloy. Moreover, the size of the secondary phase increases with the increase of shoulder diameter, which leads to the increase in local cathode/anode area ratio, and the corrosion resistance of the three FSP-treated samples gradually reduces to 1520, 247, and 111 Ω·cm2, respectively. Notably, under the FSP treatment at 800 r/min rotation speed, 40 mm/min traveling speed, and 0.3 mm plunge depth, when the tool with a shoulder diameter of 14 mm is employed, the precipitates in the Mg-5Zn alloy gets sufficiently fragmented and evenly dispersed, along with a relatively low dislocation density. The average corrosion current density of this friction stir processed sample in a 3.5%NaCl aqueous solution is reduced to 4.11 × 10-6 A/cm2 compared to that of the as-cast alloy (3.15 × 10-5 A/cm2).

Key wordsfriction stir processing    precipitate    shoulder diameter    corrosion resistance
收稿日期: 2023-07-01     
ZTFLH:  TB304  
基金资助:国家自然科学基金项目(52035005);国家自然科学基金项目(52175334)
通讯作者: 史清宇,shqy@tsinghua.edu.cn,主要从事搅拌摩擦焊接与加工、焊接力学及模拟仿真等方面的研究
作者简介: 龙 飞,男,1993年生,博士
图1  铸态Mg-5Zn合金显微组织的OM像和晶粒尺寸分布
图2  3种轴肩直径下搅拌摩擦加工(FSP)处理的Mg-5Zn合金样品的反极图
图3  铸态Mg-5Zn合金和经FSP处理样品的BSE像
图4  铸态Mg-5Zn合金和FSP处理样品的XRD谱
图5  FSP处理的Mg-5Zn合金样品在搅拌区中心左右各5 mm区域的硬度变化
图6  FSP处理的Mg-5Zn合金样品的核平均取向差(KAM)图及其分布情况
图7  FSP工艺处理的Mg-5Zn合金样品的晶界分布图
图8  3种FSP工艺处理的Mg-5Zn合金样品的极图
图9  铸态Mg-5Zn母材与FSP处理的样品在3.5%NaCl溶液中的电化学阻抗谱(EIS)
图10  阻抗拟合所使用的等效电路图
Sample

Rs

Ω·cm2

CPE1-T

μΩ-1·cm-2·s-1

CPE1-n

R1

Ω·cm2

CPE2-T

μΩ-1·cm-2·s-1

CPE2-n

R2

Ω·cm2

R3

Ω·cm2

L1

H·cm-2

As-cast5.221.27 × 10-50.937241.85 × 10-30.67889.01926.03714
FSP-143.991.06 × 10-50.959981.87× 10-30.60522.0--
FSP-174.162.88 × 10-50.87102.50 × 10-50.90487.9489.22345
FSP-205.471.06 × 10-40.7836.06 × 10-50.65189.0264.0307
表1  铸态Mg-5Zn母材与FSP处理的样品在3.5%NaCl溶液中的EIS拟合结果
图11  铸态Mg-5Zn母材和FSP处理的样品在3.5%NaCl溶液中的极化曲线
SampleEcorr (vs SCE) / Vicorr / (A·cm2)
As-cast-1.413.15 × 10-5
FSP-14-1.444.11 × 10-6
FSP-17-1.452.85 × 10-5
FSP-20-1.451.10 × 10-4
表2  铸态Mg-5Zn母材和FSP处理样品在3.5%NaCl溶液中的动电位极化曲线的拟合结果
1 Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
1 曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
2 Liu K, Lou F, Fu J J, et al. Microstructure and corrosion behaviors of as-rolled Mg-Zn-Er alloy sheets [J]. Trans. Nonferrous. Met. Soc. China, 2022, 32: 1881
3 Zhou M R, Huang X S, Morisada Y, et al. Effects of Ca and Sr additions on microstructure, mechanical properties, and ignition temperature of hot-rolled Mg-Zn alloy [J]. Mater. Sci. Eng., 2020, A769: 138474
4 Ci W J, Deng L L, Chen X H, et al. Effect of minor Ca addition on microstructure and corrosion behavior of Mg-Y-Ca alloys [J]. J. Mater. Res. Technol., 2023, 26: 7502
5 Sun C, Liu H, Wang C, et al. Anisotropy investigation of an ECAP-processed Mg-Al-Ca-Mn alloy with synergistically enhanced mechanical properties and corrosion resistance [J]. J. Alloys Compd., 2022, 911: 165046
6 Gao J H, Guan S K, Ren Z W, et al. Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid [J]. Mater. Lett., 2011, 65: 691
7 Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, R50: 1
8 Ma Z Y. Friction stir processing technology: A review [J]. Metall. Mater. Trans., 2008, 39A: 642
9 Cao G H, Liu Y X, Zhang D T, et al. Effect of aging treatment on microstructural evolution and mechanical properties of submerged friction stir processed WE43 alloy [J]. Rare Met. Mater. Eng., 2018, 47: 3179
9 曹耿华, 刘一雄, 张大童 等. 时效热处理对水下搅拌摩擦加工WE43镁合金的微观组织及力学性能的影响 [J]. 稀有金属材料与工程, 2018, 47: 3179
10 Xiao B L, Yang Q, Yang J, et al. Enhanced mechanical properties of Mg-Gd-Y-Zr casting via friction stir processing [J]. J. Alloys Compd., 2011, 509: 2879
11 Saikrishna N, Pradeep Kumar Reddy G, Munirathinam B, et al. Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy [J]. J. Magnes. Alloy., 2016, 4: 68
12 Argade G R, Panigrahi S K, Mishra R S, et al. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium [J]. Corros. Sci., 2012, 58: 145
13 Zhang W, Tan L L, Ni D R, et al. Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy [J]. J. Mater. Sci. Technol., 2019, 35: 777
doi: 10.1016/j.jmst.2018.11.025
14 Zhang S X, Zhang X N, Zhao C L, et al. Research on an Mg-Zn alloy as a degradable biomaterial [J]. Acta Biomater., 2010, 6: 626
doi: 10.1016/j.actbio.2009.06.028 pmid: 19545650
15 Lu C, Wei Z S, Huang X F, et al. Research and development of heat resistant magnesium alloy [J]. Foundry, 2005, 54: 112
15 卢 晨, 卫中山, 黄晓锋 等. 耐热镁合金的研究进展 [J]. 铸造, 2005, 54: 112
16 Cai S H, Lei T, Li N F, et al. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys [J]. Mater. Sci. Eng., 2012, C32: 2570
17 Li Y. Study on hot deformation behavior and the effects of friction stir processing on the microstructure and properties of Mg-Li alloys [D]. Jinan: Shandong University, 2022
17 李 奕. 镁锂合金热变形行为及搅拌摩擦加工对其组织与性能影响研究 [D]. 济南: 山东大学, 2022
18 Yan Z F, Wang D H, He X L, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect [J]. Mater. Sci. Eng., 2018, A723: 212
19 Baril G, Blanc C, Pebere N. AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures [J]. J. Electrochem. Soc., 2001, 148: B489
20 Liu W, Cao F, Chen A, et al. Effect of chloride ion concentration on electrochemical behavior and corrosion product of AM60 magnesium alloy in aqueous solution [J]. Corrosion, 2012, 68: 045001
21 Song G L, Atrens A. Understanding magnesium corrosion—A framework for improved alloy performance [J]. Adv. Eng. Mater., 2013, 5: 837
22 Asmussen R M, Binns W J, Jakupi P, et al. Microstructural effects on corrosion of AM50 magnesium alloys [J]. J. Electrochem. Soc., 2014, 161: C501
23 King A D, Birbilis N, Scully J R. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study [J]. Electrochim. Acta, 2014, 121: 394
24 Long F, Chen G Q, Zhou M R, et al. Simultaneous enhancement of mechanical properties and corrosion resistance of as-cast Mg-5Zn via microstructural modification by friction stir processing [J]. J. Magnes. Alloy., 2023, 11: 1931
25 Huang Y X, Wang Y B, Meng X C, et al. Dynamic recrystallization and mechanical properties of friction stir processed Mg-Zn-Y-Zr alloys [J]. J. Mater. Process. Technol., 2017, 249: 331
26 Al-Samman T. Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy [J]. Acta Mater., 2009, 57: 2229
27 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. Oxford: Pergamon Press, 1995: 127
28 Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium [J]. Mater. Sci. Eng., 2008, A490: 411
29 Zener C. Private communication to CS Smith [J]. Trans. AIME, 1949, 175: 15
30 Navazani M, Dehghani K. Fabrication of Mg-ZrO2 surface layer composites by friction stir processing [J]. J. Mater. Process. Technol., 2016, 229: 439
31 Birbilis N, Ralston K D, Virtanen S, et al. Grain character influences on corrosion of ECAPed pure magnesium [J]. Corros. Eng. Sci. Technol., 2010, 45: 224
32 Hoog C O, Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route [J]. Adv. Eng. Mater., 2008, 10: 579
33 Ralston K D, Birbilis N. Effect of grain size on corrosion: A review [J]. Corrosion, 2010, 66: 075005
34 Song D, Ma A B, Jiang J H, et al. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution [J]. Corros. Sci., 2010, 52: 481
35 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
36 Ahmadkhaniha D, Fedel M, Sohi M H, et al. Corrosion behavior of severely plastic deformed magnesium based alloys: A review [J]. Surf. Eng. Appl. Electrochem., 2017, 53: 439
37 Xin R L, Li B, Li L, et al. Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl [J]. Mater. Des., 2011, 32: 4548
38 Pu Z, Song G L, Yang S, et al. Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy [J]. Corros. Sci., 2012, 57: 192
39 Song G L, Xu Z Q. Crystal orientation and electrochemical corrosion of polycrystalline Mg [J]. Corros. Sci., 2012, 63: 100
40 Long F, Liu Q, Chen G Q, et al. Improved corrosion resistance achieved in a friction stir processed Mg-5Zn-0.3Ca alloy with fragmented precipitates [J]. Corros. Sci., 2022, 208: 110675
41 Liu M, Qiu D, Zhao M C, et al. The effect of crystallographic orientation on the active corrosion of pure magnesium [J]. Scr. Mater., 2008, 58: 421
42 Liu Q, Ma Q X, Chen G Q, et al. Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing [J]. Corros. Sci., 2018, 138: 284
43 Cao F Y, Song G L, Atrens A. Corrosion and passivation of magnesium alloys [J]. Corros. Sci., 2016, 111: 835
44 Hamu G B, Eliezer D, Wagner L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy [J]. J. Alloys Compd., 2009, 468: 222
45 Zhang T, Shao Y W, Meng G Z, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-Relation between the microstructure and corrosion behavior [J]. Corros. Sci., 2011, 53: 1960
[1] 付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
[2] 唐丽婷, 郭倩颖, 李冲, 丁然, 刘永长. Allvac 718Plus高温合金第二相演变与性能研究进展[J]. 金属学报, 2025, 61(1): 43-58.
[3] 李亚微, 谢光, 柯于斌, 卢玉章, 黄亚奇, 张健. 小角中子散射原位研究镍基高温合金第二相析出演化行为[J]. 金属学报, 2024, 60(8): 1100-1108.
[4] 凡莉花, 李金临, 孙九栋, 吕梦甜, 王清, 董闯. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响[J]. 金属学报, 2024, 60(4): 453-463.
[5] 杨彬彬, 宋元元, 郝龙, 姜海昌, 戎利建. 3%Cu低碳马氏体不锈钢0Cr13Ni4Mo的显微组织及耐腐蚀性能[J]. 金属学报, 2024, 60(12): 1656-1666.
[6] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[7] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[8] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[9] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[10] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[11] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[12] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[13] 曾荣昌, 崔蓝月, 柯伟. 医用镁合金:成分、组织及腐蚀[J]. 金属学报, 2018, 54(9): 1215-1235.
[14] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[15] 王光东, 田妮, 何长树, 赵刚, 左良. DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成[J]. 金属学报, 2018, 54(7): 1059-1067.