Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1895-1910    DOI: 10.11900/0412.1961.2024.00055
  研究论文 本期目录 | 过刊浏览 |
连铸结晶器内Ar气泡破碎-聚合和捕获行为的数值模拟
徐涛1,2, 邓安元1,2(), 李阳3, 王恩刚1,2
1 东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819
2 东北大学 冶金学院 沈阳 110819
3 攀钢集团研究院有限公司 钒钛资源综合利用国家重点实验室 攀枝花 617000
Numerical Simulation of Ar Bubbles Fragmentation-Polymerization and Trapping Behavior in Continuous Casting Mold
XU Tao1,2, DENG Anyuan1,2(), LI Yang3, WANG Engang1,2
1 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
2 School of Metallurgy, Northeastern University, Shenyang 110819, China
3 State Key Laboratory of Comprehensive Utilization of Vanadium and Titanium Resources, Pangang Group Research Institute Co. Ltd. , Panzhihua 617000, China
引用本文:

徐涛, 邓安元, 李阳, 王恩刚. 连铸结晶器内Ar气泡破碎-聚合和捕获行为的数值模拟[J]. 金属学报, 2025, 61(12): 1895-1910.
Tao XU, Anyuan DENG, Yang LI, Engang WANG. Numerical Simulation of Ar Bubbles Fragmentation-Polymerization and Trapping Behavior in Continuous Casting Mold[J]. Acta Metall Sin, 2025, 61(12): 1895-1910.

全文: PDF(3392 KB)   HTML
摘要: 

为合理控制板坯结晶器内的Ar气泡运动分布,提高气泡对夹杂物的去除效率和减少凝固坯壳对气泡的捕获,本工作针对800 mm ×1300 mm × 230 mm的结晶器建立了气泡碰撞-聚合-破碎-捕获模型,分析了拉速、吹Ar量、水口倾角、水口浸入深度对气泡运动、分布和气泡被凝固坯壳捕获的规律。结果表明,大气泡主要在水口附近上浮,中等尺寸气泡在远离水口区域上浮,多数小气泡在窄面附近上浮,少数小气泡会运动到结晶器深处被凝固坯壳捕获,造成铸坯质量缺陷。水口浸入深度主要影响气泡的分布,吹Ar量和水口倾角主要影响气泡直径及气泡数量,拉速对气泡的分布和气泡数量及气泡直径都有影响。对于1300 mm × 230 mm的铸坯,1.4 m/min拉速、10 L/min吹Ar量、-15°水口倾角和180 mm水口浸入深度可使气泡在结晶器内具有较好的弥散分布特性,有利于去除夹杂物,提高钢液纯净度,减少凝固坯壳对气泡的捕获,提高板坯质量。

关键词 连铸结晶器Ar气泡夹杂物凝固坯壳捕获行为    
Abstract

Nozzle Ar blowing technology profoundly influences the production and quality of continuous casting slabs. Its primary objectives include minimizing nozzle nodules, eliminating inclusions, and enhancing slab quality. Extensive physical experiments and numerical simulations have been performed to reveal the metallurgical phenomena and principles in continuous casting molds. However, the high costs associated with physical experiments and constraints related to model size and measurement methods hinder the accurate depiction of the actual motion state of high-temperature liquid steel and bubbles. As a result, more researchers are using numerical simulation methods to investigate Ar blowing at the nozzle. The focus of these studies typically involves tracking bubbles' position, velocity, and diameter using the Euler-Lagrange method. Numerous scholars have explored the influence of process parameters such as casting speed and Ar blowing rate on the distribution of Ar bubbles in the mold via numerical simulations. These studies also examine how these parameters affect the capture of Ar bubbles in the solidified shell. However, few scholars have explored the interactions among bubbles, such as collision, coalescence, and fragmentation. Understanding these interactions is crucial for determining bubble distribution, particularly near the mold wall, which significantly impacts the quality of the solidified shell. A collision-polymerization-fragmentation-trapping model has been developed to address this gap and describe bubble behavior. This model aims to effectively manage the movement and distribution of Ar bubbles in the slab mold, enhance the efficiency of inclusion removal by bubbles, and minimize bubble entrapment in the solidified shell. The simulation study examined how casting speed, Ar blowing rate, nozzle angle, and nozzle immersion depth affect the movement of Ar bubbles in a 800 mm × 1300 mm × 230 mm continuous casting mold. The findings underscore the critical role of bubble collision, aggregation, and fragmentation in shaping their size distribution in the mold. Moreover, process parameters substantially influence the spatial distribution of bubbles: larger bubbles tend to accumulate and float up near the nozzle, medium-sized bubbles are located and float up farther from the nozzle, and smaller bubbles predominantly gather and float up near the mold's narrow surfaces. However, some small bubbles have the potential to migrate toward the deeper sections of the mold and become entrapped by the solidified shell, potentially causing defects in the slab quality. The distribution of bubbles is predominantly influenced by the nozzle immersion depth, which affects where bubbles are located in the mold. Meanwhile, the Ar blowing rate and the nozzle angle significantly affect the diameter and number of bubbles in the mold. Additionally, casting speed is crucial in influencing bubble distribution, number, and diameter in the mold. Optimal conditions, such as a casting speed of 1.4 m/min, an Ar blowing rate of 10 L/min, a nozzle angle of -15°, and a nozzle immersion depth of 180 mm, result in a well-dispersed bubble distribution in the mold. This favorable dispersion enhances the effectiveness of inclusion removal, improves the purity of liquid steel, minimizes bubble entrapment by solidified shells, and consequently enhances the overall quality of the slab.

Key wordscontinuous casting mold    Ar bubble    inclusion    solidified shell    capture behavior
收稿日期: 2024-02-28     
ZTFLH:  TF777  
基金资助:高等学校学科创新引智计划项目(BP0719037)
通讯作者: 邓安元,dengay@epm.neu.edu.cn,主要从事电磁冶金研究
Corresponding author: DENG Anyuan, professor, Tel: 13898801894, E-mail: dengay@epm.neu.edu.cn
作者简介: 徐涛,男,1998年生,硕士
图1  气泡偏心碰撞模型示意图[15] (0 < B < 1,其中B为碰撞系数)
图2  物理模型和网格示意图
Process parameterSymbolValueUnit
Mold length, width, and thicknessLm × Wm × Tm800 × 1300 × 230mm3
Nozzle diameterdin80mm
Nozzle outlet height and widthHout × Wout83 × 65mm2
Nozzle angledθ-10, -15, -20(°)
Nozzle immersion depthdim130, 180, 230mm
Casting speedvp1.2, 1.4, 1.6m·min-1
Degree of superheatTsub15K
Initial particle diameter of argon bubblesdinit1mm
Ar blowing rateQb5, 10, 20L·min-1
Density of molten steelρ7020kg·m-3
Viscosity of molten steelμ0.0067Pa·s-1
Specific heat capacity at constant pressurecp750J·kg-1·K-1
Thermal conductivityλ30W·m-1·K-1
Coefficient of thermal expansionγt0.0001K-1
Latent heatLh270kJ·kg-1
Argon-liquid steel surface tension coefficientγb1.4N·m-1
Bubble densityρb0.56kg·m-3
Solidus temperatureTS1730K
Liquidus temperatureTL1786K
表1  模拟计算主要参数
CaseTotal cell number(| Vj - VD| / | VD|) / %(|Tj - TD| / |TD|) / %(|Lj - LD| / |LD|) / %
A3536801.8001.382.909
B4057841.6481.361.075
C4578880.3790.650.506
D536044---
表2  4种不同网格数量的网格无关性验证
图3  气泡破碎实验[25]和模拟结果
图4  气泡碰撞-聚合实验[25]和模拟结果
图5  气泡碰撞-弹开实验[25]和模拟结果
图6  结晶器内的气泡分布水模型实验结果[26]
图7  结晶器内的Ar气泡分布和含气率分布
图8  结晶器中心截面上的速度和流场分布
图9  Ar气泡在结晶器内不同时刻(t)的运动轨迹
图10  不同拉速下结晶器内的气泡与含气率分布
图11  不同拉速下结晶器内气泡数量和平均直径
图12  不同拉速下结晶器内的被捕获气泡量和不同直径气泡的捕获占比
图13  不同吹Ar量下结晶器内的气泡分布和含气率分布
图14  不同吹Ar量下结晶器内的气泡数量和平均直径
图15  不同吹Ar量下结晶器内的气泡捕获量和不同直径气泡的捕获率
图16  不同水口倾角结晶器内的气泡分布和含气率分布
图17  不同水口倾角下结晶器内的气泡平均直径和气泡数量
图18  不同水口倾角下结晶器内气泡被捕获量和不同直径气泡的捕获占比
图19  不同水口浸入深度下结晶器内的气泡分布和含气率
图20  不同水口浸入深度下结晶器内的气泡数量和平均直径
图21  不同水口浸入深度下结晶器内被气泡捕获数量和不同直径气泡的捕获占比
[1] Ni B, Lin Y, Luo Z G, et al. Water model study on bubble behavior in slab continuous casting mold [J]. J. Mater. Metall., 2008, 7: 249
[1] 倪 冰, 林 媛, 罗志国 等. 板坯连铸结晶器水模内气泡运动的实验研究 [J]. 材料与冶金学报, 2008, 7: 249
[2] Ramos-Banderas A, Morales R D, Sánchez-Pérez R, et al. Dynamics of two-phase downwards flows in submerged entry nozzles and its influence on the two-phase flow in the mold [J]. Int. J. Multi. Flow, 2005, 31: 643
[3] Wu Y, Liu Z, Wang F, et al. Experimental investigation of trajectories, velocities and size distributions of bubbles in a continuous-casting mold [J]. Powder Technol., 2021, 387: 325
[4] Liu C L, Luo Z G, Zhang T, et al. Mathematical simulation on gas bubble movement in the water model for the slab caster mould [J]. Res. Iron Steel, 2013, 41: 9
[4] 刘崇林, 罗志国, 张 涛 等. 板坯结晶器水模型内气泡运动行为的数学模拟 [J]. 钢铁研究, 2013, 41: 9
[5] Wang B, Guo J Y, Zhang J Y, et al. Study on water modeling of slab continuous casting mould with argon blowing [J]. J. Chin. Rare Earth Soc., 2008, 26(spec. issue): 262
[5] 王 波, 郭俊玉, 张捷宇 等. 吹氩板坯连铸结晶器水模型实验研究 [J].中国稀土学报, 2008, 26(特刊): 262
[6] Vikas S, Sunittha J, Ajmani S K, et al. Experimental simulation and mathematical modeling of air bubble movement in slab caster mold [J]. ISIJ Int., 2006, 46: 210
[7] Lee G G, Thomas B G, Kim S H. Effect of refractory properties on initial bubble formation in continuous-casting nozzles [J]. Met. Mater. Int., 2010, 16: 501
[8] Liu Z Q, Li B K. Large-Eddy simulation of transient horizontal gas-liquid flow in continuous casting using dynamic subgrid-scale model [J]. Metall. Mater. Trans., 2017, 48B: 1833
[9] Liu Z Q, Qi F S, Li B K, et al. Multiple size group modeling of polydispersed bubbly flow in the mold: An analysis of turbulence and interfacial force models [J]. Metall. Mater. Trans., 2015, 46B: 933
[10] Liu Z Q, Li L M, Qi F S, et al. Population balance modeling of polydispersed bubbly flow in continuous-casting using multiple-size-group approach [J]. Metall. Mater. Trans., 2015, 46B: 406
[11] Liu Z Q, Li B K, Jiang M F. Transient asymmetric flow and bubble transport inside a slab continuous-casting mold [J]. Metall. Mater. Trans., 2014, 45B: 675
[12] Liu Z Q, Li B K, Jiang M F. Euler-Euler-Lagrangian modeling for two-phase flow and particle transport in continuous casting mold [J]. ISIJ Int., 2014, 54: 1314
[13] Liu Z Q, Qi F S, Li B K, et al. Modeling of bubble behaviors and size distribution in a slab continuous casting mold [J]. Int. J. Multi. Flow, 2016, 79: 190
[14] Thomas B G, Sengupta J. The visualization of defect formation during casting processes [J]. JOM, 2006, 58: 16
[15] Yang W D. Study on multiphase transport phenomena in continuous casting mold with argon blowing considering bubble coalescence and breakup [D]. Shenyang: Northeastern University, 2022
[15] 杨伟栋. 考虑气泡聚合和破碎的吹氩连铸结晶器内多相传输现象的研究 [D]. 沈阳: 东北大学, 2022
[16] Jin X L, Lei Z S, Yu Z, et al. Physical simulation of Ar bubble behavior in the solid/liquid interface of continuous casting billet [J]. Acta Metall. Sin., 2011, 47: 763
[16] 金小礼, 雷作胜, 于 湛 等. Ar气泡在连铸坯固/液界面处运动行为的物理模拟研究 [J]. 金属学报, 2011, 47: 763
[17] Gong J R, Liu Z Q, Wu Y D, et al. Transient movement and capture behavior of dispersed argon bubbles in continuous casting mold [J]. J. Iron Steel Res., 2022, 34: 461
[17] 宫佳睿, 刘中秋, 吴颖东 等. 连铸结晶器内弥散氩气泡的瞬态运动和捕捉行为 [J]. 钢铁研究学报, 2022, 34: 461
[18] Miki Y, Thomas B G. Modeling of inclusion removal in a tundish [J]. Metall. Mater. Trans., 1999, 30B: 639
[19] Yuan Q. Transient study of turbulent flow and particle transport during continuous casting of steel slabs [D]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 2004
[20] Yuan Q, Thomas B G, Vanka S P. Study of transient flow and particle transport in continuous steel caster molds: Part II. Particle transport [J]. Metall. Mater. Trans., 2004, 35B: 703
[21] Xu L. Numerical simulation of molten steel flow, heat transfer, solidification, and inclusion migration in mold with vertical electromagnetic brake [D]. Shenyang: Northeastern University, 2021
[21] 许 琳. 立式电磁制动结晶器内钢液流动、传热凝固与夹杂物迁移的数值模拟研究 [D]. 沈阳: 东北大学, 2021
[22] Li Y. Fundamental research of suppressing metal liquid surface deformation and fluctuation by magnetic pressure [D]. Shenyang: Northeastern University, 2021
[22] 李 阳. 磁压控制金属液面变形和波动行为的基础研究 [D]. 沈阳: 东北大学, 2021
[23] Deng A Y. The coupled simulation of electromagnetic field, steel flow and solidification in soft-contact mold [D]. Shenyang: Northeastern University, 2001
[23] 邓安元. 软接触结晶器内电磁场及钢液流动凝固的数值模拟 [D]. 沈阳: 东北大学, 2001
[24] Yang B, Deng A Y, Li Y, et al. Numerical simulation of flow and solidification in continuous casting process with mold electromagnetic stirring [J]. J. Iron Steel Res. Int., 2019, 26: 219
[25] Zhang T. Modeling of motion and interaction of discrete phases in continuous casting mold [D]. Shenyang: Northeastern University, 2018
[25] 张 涛. 连铸结晶器内离散相运动行为及相互作用的模拟 [D]. 沈阳: 东北大学, 2018
[26] Ni B. Numerical and physical simulation of argon gas injection in a continuous slab casting mold [D]. Shenyang: Northeastern University, 2008
[26] 倪 冰. 板坯连铸结晶器内钢液吹氩过程数学物理模拟 [D]. 沈阳: 东北大学, 2008
[27] Sun Q L. The research of bubble terminal velocity in slab continuous casting mold with argon gas blowing through SEN [J]. Shanxi Metall., 2014, (5): 14
[27] 孙全利. 水口吹氩结晶器气泡运动终速的研究 [J]. 山西冶金, 2014, (5): 14
[1] 王博辰, 任英, 邝霜, 单庆林, 潘宏伟, 路博勋, 石晓伟, 王举金, 张立峰. 铝脱氧钢与CaO-MgO-Al2O3 精炼渣反应动力学研究[J]. 金属学报, 2025, 61(9): 1335-1343.
[2] 段生朝, 刘珍童, 康君, 白乘风, 文健, 刘刚, 张立峰. 综述:中间包钢液二次氧化对钢中非金属夹杂物的影响[J]. 金属学报, 2025, 61(10): 1485-1501.
[3] 孟泽, 李光强, 李腾飞, 郑庆, 曾斌, 刘昱. Ce75Cr1钢洁净度、组织与耐点蚀性能的影响[J]. 金属学报, 2024, 60(9): 1229-1238.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[6] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[7] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[8] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[9] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[10] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[11] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[12] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[13] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[14] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[15] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.