Please wait a minute...
金属学报  2024, Vol. 60 Issue (8): 1001-1016    DOI: 10.11900/0412.1961.2024.00063
  综述 本期目录 | 过刊浏览 |
中子表征技术在金属结构材料研究中的应用
王延绪1, 龚武2, 苏玉华2, 李昺1()
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 Japan Proton Accelerator Research Complex Center, Japan Atomic Energy Agency, Tokai Ibaraki 319-1195, Japan
Application of Neutron Characterization Techniques to Metallic Structural Materials
WANG Yanxu1, GONG Wu2, SU Yuhua2, LI Bing1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Japan Proton Accelerator Research Complex Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
引用本文:

王延绪, 龚武, 苏玉华, 李昺. 中子表征技术在金属结构材料研究中的应用[J]. 金属学报, 2024, 60(8): 1001-1016.
Yanxu WANG, Wu GONG, Yuhua SU, Bing LI. Application of Neutron Characterization Techniques to Metallic Structural Materials[J]. Acta Metall Sin, 2024, 60(8): 1001-1016.

全文: PDF(2415 KB)   HTML
摘要: 

结构材料的原子结构、微观组织与宏观性能的关联性是材料研究的核心问题之一,历久弥新。近年来,加速器基中子源大科学装置的建设和相关实验技术取得了长足进步,这为在实时原位条件下深入研究该问题提供了良好的基础。本文介绍了中子衍射、Bragg边成像、小角中子散射、对分布函数分析、准弹性/非弹性中子散射等主要中子表征技术在结构材料中应用的最新进展,着重论述了钢铁材料相变内应力起源与演化、镁合金等轻金属材料的变形机制、基于Bragg边成像的微观结构及残余应力分析,并对今后发展趋势进行了简要展望。

关键词 中子散射相变弹塑性变形结构材料    
Abstract

The correlation between the atomic structure, microstructure, and macroscopic properties of structural materials remains a core issue in materials research. In recent years, substantial progress has been achieved in constructing accelerator-based neutron sources and related experimental techniques, offering a robust platform for an in-depth understanding of the aforementioned correlation under real-time and in situ conditions. This article reviews the latest advancements in the application of major neutron characterization techniques, including neutron diffraction, Bragg-edge imaging, small-angle neutron scattering, pair distribution function analysis, and quasi-elastic/inelastic neutron scattering, in structural materials. Furthermore, it particularly highlights the origins and evolution of internal stresses during the phase transformations of steels, deformation mechanisms in light metals such as magnesium alloys, and microstructure and residual stress analyses using Bragg-edge imaging. Finally, a brief outlook on future development trends is provided.

Key wordsneutron scattering    phase transformation    elasto-plastic deformation    structural material
收稿日期: 2024-03-01     
ZTFLH:  TG115  
基金资助:国家自然科学基金项目(52201029);中国科学院依托重大科技基础设施的建制化科研项目(JZHKYPT-2021-01)
通讯作者: 李昺,bingli@imr.ac.cn,主要从事固态相变材料的中子散射研究
Corresponding author: LI Bing, professor, Tel: (024)23975272, E-mail: bingli@imr.ac.cn
作者简介: 王延绪,男,1990年生,研究员,博士
图1  反应堆与散裂中子源的发展[3]
图2  散射光路,小角散射与衍射谱,及飞行时间法光路的示意
图3  Bragg边出现的示意图及对应的纯Fe的衍射峰
图4  中子透射率光谱示意图
SourceInstrumentParameterMain sample environment

SNS

VULCAN[12] (ED)

Δd / d = 0.25%

Loading frame (100 kN, 30 Hz)

Furnace (RT-1773 K)

Liquid N2 cooling jar free (80 K-RT)

Additive manufacturing system

VENUS (BEI)Under construction

J-PARC

TAKUMI[13] (ED)

Δd / d = 0.2%

High temperature loading frame (50 kN, RT-1273 K)

Cryogenic loading frame (50 kN, 10 K-RT)

Fatigue machine (60 kN, 30 Hz)

Eulerian cradle

RADEN[14,15] (BEI)

Δλ / λ = 0.2%

SR: 10 μm (camera-type detector), 100 μm (counting-type detector)

Furnace (RT-1173 K)

Polarization analysis system

ISISENGIN-X[4] (ED)Δd / d = 0.26%

High temperature loading frame (100 kN, RT-1373 K)

Cryogenic loading frame (50 kN, 10 K-RT)

IMAT[16] (BEI)

Δλ / λ = 0.7%

SR: 50 μm (camera-type detector), 200 μm (counting-type detector)

Furnace (RT-1273 K)

CSNSEMD[17] (ED)Δd / d = 0.25%

3D scanner

Tensile ring (100 kN, RT-1473 K, 50 Hz)

ERNI[18] (BEI)

Δλ / λ = 0.4%

SR: 15 μm (camera-type detector), 50 μm (counting-type detector)

Fatigue testing (10 kN, 10Hz)

High temperature loading frame (RT-1673 K, 60 kN)

Cryogenic loading frame (6-473 K, 50 kN)

CMRR

RSND[19] (ED)

Δd / d = 0.20%

Flux: 4.7 × 106 n·s-1·cm-2

Stress ring (15 kN)

Furnace (RT-773 K)

Temperature-tension-torsion instrument (173-727 K, 100 kN, 50 N·m)

Cryogenic loading frame (15 K-RT, 2.5 kN)

HETU[20] (ED)

Δd / d = 0.19%

Flux: 3.0 × 107 n·s-1·cm-2

Loading frame (15 kN)

Cyrostat (93 K-RT) and furnace (RT-1273 K)

Eulerian cradle

CARRRSD[21] (ED)

Δd / d = 0.2%

Flux: 2.7 × 107 n·s-1·cm-2

Furnace (RT-1100 K)
ESSD[21] (ED)

Δd / d = 0.2%

Flux: 4.0 × 107 n·s-1·cm-2

Loading frame (100 kN)

Cyrostat (77 K-RT) and furnace (RT-1300 K)

TNI[22] (Imaging)

Δλ / λ = 3%

SR: 50 μm (camera-type detector)

Flux: 1.0 × 109 n·s-1·cm-2

Polarization analysis system

表1  代表性的工程材料研究平台[4,12~22]
图5  中碳低合金钢淬火过程中奥氏体和马氏体晶胞参数随温度变化曲线[34]
图6  {101¯0}晶格再取向示意图[60]和镁合金的压缩-拉伸变形中的中子衍射谱变化[73]
图7  亚稳奥氏体合金经不同深处理后马氏体相体积分数的二维分布图[14]
图8  基于Bragg边透射成像所测的残余应变[115]
图9  Inconel718合金的透射电镜形貌、小角中子散射谱与原子探针重构[128]
图10  CrMnFeCoNi合金的非弹性中子散射谱[141]
1 Lázpita P, Barandiarán J M, Gutiérrez J, et al. Magnetic moment and chemical order in off-stoichiometric Ni-Mn-Ga ferromagnetic shape memory alloys [J]. New J. Phys., 2011, 13: 033039
2 Willis B T M, Carlile C J. Experimental Neutron Scattering [M]. Oxford: Oxford University Press, 2009: 15
3 Yu X B, Cheng Y Q, Li Y Y, et al. Neutron scattering studies of heterogeneous catalysis [J]. Chem. Rev., 2023, 123: 8638
doi: 10.1021/acs.chemrev.3c00101 pmid: 37315192
4 Haynes R, Paradowska A M, Chowdhury M A H, et al. An inert-gas furnace for neutron scattering measurements of internal stresses in engineering materials [J]. Meas. Sci. Technol., 2012, 23: 047002
5 Gao L, Han S B, Ni H J, et al. Application of neutron imaging in observing various states of matter inside lithium batteries [J]. Natl. Sci. Rev., 2023, 10: nwad238
6 Lehmann E H, Frei G, Vontobel P, et al. The energy-selective option in neutron imaging [J]. Nucl. Instrum. Methods Phys. Res., 2009, 603A: 429
7 Treimer W, Strobl M, Kardjilov N, et al. Wavelength tunable device for neutron radiography and tomography [J]. Appl. Phys. Lett., 2006, 89: 203504
8 Tamaki M. Conceptual monochromatic digital neutron radiography using continuous cold neutron beam [J]. Nucl. Instrum. Methods Phys. Res., 2005, 542A: 32
9 Kamiyama T, Sato H, Miyamoto N, et al. Energy sliced neutron tomography using neutron resonance absorption spectrometer [J]. Nucl. Instrum. Methods Phys. Res., 2009, 600A: 107
10 Tremsin A S, Rakovan J, Shinohara T, et al. Non-destructive study of bulk crystallinity and elemental composition of natural gold single crystal samples by energy-resolved neutron imaging [J]. Sci. Rep., 2017, 7: 40759
doi: 10.1038/srep40759 pmid: 28102285
11 Li B, Zhang Z D. Neutron scattering of magnetocaloric and barocaloric materials [J]. Sci. Sin. Phys., Mech. Astron., 2021, 51: 067505
11 李 昺, 张志东. 磁卡与压卡材料的中子散射 [J]. 中国科学: 物理学 力学 天文学, 2021, 51: 067505
12 An K, Skorpenske H D, Stoica A D, et al. First in situ lattice strains measurements under load at VULCAN [J]. Metall. Mater. Trans., 2011, 42A: 95
13 Harjo S, Ito T, Aizawa K, et al. Current status of engineering materials diffractometer at J-PARC [J]. Mater. Sci. Forum, 2011, 681: 443
14 Shinohara T, Kai T, Oikawa K, et al. The energy-resolved neutron imaging system, RADEN [J]. Rev. Sci. Instrum., 2020, 91: 043302
15 Isegawa K, Setoyama D, Kimura H, et al. The first application of a Gd3Al2Ga3O12:Ce single-crystal scintillator to neutron radiography [J]. J. Imaging, 2021, 7: 232
16 Kockelmann W, Minniti T, Pooley D, et al. Time-of-flight neutron imaging on IMAT@ISIS: A new user facility for materials science [J]. J. Imaging, 2018, 4: 47
17 Li X H. The new engineering material diffractometer (EMD) at CSNS [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
18 Chen J. Progress of GPPD & ERNI and their applications at CSNS [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
19 Sun G A, Liu D, Gong J, et al. The neutron scattering platform of China Mianyang Research Reactor (CMRR) and recent applications [J]. Sci. Sin. Phys., Mech. Astron., 2021, 51: 092009
19 孙光爱, 刘 栋, 龚 建 等. 中国绵阳研究堆CMRR中子散射平台及应用 [J]. 中国科学: 物理学 力学 天文学, 2021, 51: 092009
20 Wang B H, Zhong S Y, Lin H, et al. HETU: A new high-resolution stress and texture neutron diffractometer at China Mianyang Research Reactor [J]. J. Appl. Cryst., 2023, 56: 1674
21 Li T F, Wu M M, Jiao X S, et al. Current status and future prospect of neutron facilities at China advanced research reactor [J]. Nucl. Phys. Rev., 2020, 37: 364
21 李天富, 武梅梅, 焦学胜 等. 中国先进研究堆中子科学平台发展现状及展望 [J]. 原子核物理评论, 2020, 37: 364
22 He L F. The current status of neutron imaging project at CARR [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
23 Onink M, Brakman C M, Tichelaar F D, et al. The lattice parameters of austenite and ferrite in Fe-C alloys as functions of carbon concentration and temperature [J]. Scr. Metall. Mater., 1993, 29: 1011
24 Tomota Y, Gong W, Harjo S, et al. Reverse austenite transformation behavior in a tempered martensite low-alloy steel studied using in situ neutron diffraction [J]. Scr. Mater., 2017, 133: 79
25 Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Mater., 2015, 85: 243
26 Dutta R K, Huizenga R M, Amirthalingam M, et al. In-situ synchrotron diffraction studies on transformation strain development in a high strength quenched and tempered structural steel—Part I. Bainitic transformation [J]. Metall. Mater. Trans., 2014, 45A: 218
27 Lin S, Borgenstam A, Stark A, et al. Effect of Si on bainitic transformation kinetics in steels explained by carbon partitioning, carbide formation, dislocation densities, and thermodynamic conditions [J]. Mater. Charact., 2022, 185: 111774
28 Xu P G, Zhang S Y, Harjo S, et al. Principal preferred orientation evaluation of steel materials using time-of-flight neutron diffraction [J]. Quantum Beam Sci., 2024, 8: 7
29 He S H, He B B, Zhu K Y, et al. Revealing the role of dislocations on the stability of retained austenite in a tempered bainite [J]. Scr. Mater., 2019, 168: 23
30 Zhang S Y, Godfrey E, Kockelmann W, et al. High-tech composites to ancient metals [J]. Mater. Today, 2009, 12: 78
31 Li L, Miyamoto G, Zhang Y J, et al. Quantitative analysis of microstructure evolution, stress partitioning and thermodynamics in the dynamic transformation of Fe-14Ni alloy [J]. J. Mater. Sci. Technol., 2024, 184: 221
doi: 10.1016/j.jmst.2023.10.037
32 Tomota Y, Wang Y X, Ohmura T, et al. In situ neutron diffraction study on ferrite and pearlite transformations for a 1.5Mn-1.5Si-0.2C steel [J]. ISIJ Int., 2018, 58: 2125
33 Plotkowski A, Saleeby K, Fancher C M, et al. Operando neutron diffraction reveals mechanisms for controlled strain evolution in 3D printing [J]. Nat. Commun., 2023, 14: 4950
doi: 10.1038/s41467-023-40456-x pmid: 37587109
34 Wang Y X, Tomota Y, Ohmura T, et al. Real time observation of martensite transformation for a 0.4C low alloyed steel by neutron diffraction [J]. Acta Mater., 2020, 184: 30
35 Aaronson H I, Enomoto M, Lee J K. Mechanisms of Diffusional Phase Transformations in Metals and Alloys [M]. Boca Raton: CRC Press, 2010: 601
36 Liu J B, Chen C X, Feng Q, et al. Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel: An in-situ TEM study [J]. Mater. Sci. Eng., 2017, A703: 236
37 Fukui D, Nakada N, Onaka S. Internal residual stress originated from Bain strain and its effect on hardness in Fe-Ni martensite [J]. Acta Mater., 2020, 196: 660
38 Villa M, Niessen F, Somers M A J. In situ investigation of the evolution of lattice strain and stresses in austenite and martensite during quenching and tempering of steel [J]. Metall. Mater. Trans., 2018, 49A: 28
39 Huyghe P, Caruso M, Collet J L, et al. Into the quenching & partitioning of a 0.2C steel: An in-situ synchrotron study [J]. Mater. Sci. Eng., 2019, A743: 175
40 Wang Y X, Tomota Y, Ohmura T, et al. Evolution of austenite lattice parameter during isothermal transformation in a 0.4 C low alloyed steel [J]. Materialia, 2023, 27: 101685
41 Gong W, Harjo S, Tomota Y, et al. Lattice parameters of austenite and martensite during transformation for Fe-18Ni alloy investigated through in-situ neutron diffraction [J]. Acta Mater., 2023, 250: 118860
42 Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J]. Proc. Roy. Soc., 1957, 241A: 376
43 Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta Metall., 1973, 21: 571
44 Shirai Y, Araki H, Mori T, et al. Positron annihilation study of lattice defects induced by hydrogen absorption in some hydrogen storage materials [J]. J. Alloys Compd., 2002, 330-332: 125
45 Chalermkarnnon P, Araki H, Shirai Y. Excess vacancies induced by disorder-order phase transformation in Ni3Fe [J]. Mater. Trans., 2002, 43: 1486
46 Shibata A, Takeda Y, Park N, et al. Nature of dynamic ferrite transformation revealed by in-situ neutron diffraction analysis during thermomechanical processing [J]. Scr. Mater., 2019, 165: 44
47 Li S L, Li Y, Wang Y K, et al. Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology [J]. Acta Metall. Sin., 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
47 李时磊, 李 阳, 王友康 等. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价 [J]. 金属学报, 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
48 Schmank M J, Krawitz A D. Measurement of a stress gradient through the bulk of an aluminum alloy using neutrons [J]. Metall. Trans., 1982, 13A: 1069
49 MacEwen S R, Faber J, Turner A P L. The use of time-of-flight neutron diffraction to study grain interaction stresses [J]. Acta Metall., 1983, 31: 657
50 Allen A J, Bourke M A M, Dawes S, et al. The analysis of internal strains measured by neutron diffraction in Al/SiC metal matrix composites [J]. Acta Metall. Mater., 1992, 40: 2361
51 Prangnell P B, Downes T, Withers P J, et al. An examination of the mean stress contribution to the Bauschinger effect by neutron diffraction [J]. Mater. Sci. Eng., 1995, A197: 215
52 Zhai H Y, Liu C H, Shang X Q, et al. Measuring texture-component-dependent stress of CuZn39Pb2 by neutron diffraction [J]. Int. J. Mech. Sci., 2024, 270: 109109
53 Gharghouri M A, Weatherly G C, Embury J D, et al. Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction [J]. Philos. Mag., 1999, 79A: 1671
54 Aizawa K, Gong W, Harjo S, et al. In-situ neutron diffraction study on tensile behavior of LPSO Mg-Zn-Y alloys [J]. Mater. Trans., 2013, 54: 1083
55 Harjo S, Aizawa K, Gong W, et al. Neutron diffraction monitoring of as-cast Mg97Zn1Y2 during compression and tension [J]. Mater. Trans., 2020, 61: 828
56 Zheng R X, Gong W, Du J P, et al. Rediscovery of Hall-Petch strengthening in bulk ultrafine grained pure Mg at cryogenic temperature: A combined in-situ neutron diffraction and electron microscopy study [J]. Acta Mater., 2022, 238: 118243
57 Harjo S, Gong W, Aizawa K, et al. Strengthening of αMg and long-period stacking ordered phases in a Mg-Zn-Y alloy by hot-extrusion with low extrusion ratio [J]. Acta Mater., 2023, 255: 119029
58 Hagihara K, Mayama T, Yamasaki M, et al. Contributions of multimodal microstructure in the deformation behavior of extruded Mg alloys containing LPSO phase [J]. Int. J. Plast., 2024, 173: 103865
59 Muránsky O, Carr D G, Barnett M R, et al. Investigation of deformation mechanisms involved in the plasticity of AZ31 Mg alloy: In situ neutron diffraction and EPSC modelling [J]. Mater. Sci. Eng., 2008, A496: 14
60 Muránsky O, Carr D G, Šittner P, et al. In situ neutron diffraction investigation of deformation twinning and pseudoelastic-like behaviour of extruded AZ31 magnesium alloy [J]. Int. J. Plast., 2009, 25: 1107
61 Muránsky O, Barnett M R, Carr D G, et al. Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission [J]. Acta Mater., 2010, 58: 1503
62 Muránsky O, Barnett M R, Luzin V, et al. On the correlation between deformation twinning and Lüders-like deformation in an extruded Mg alloy: In situ neutron diffraction and EPSC.4 modelling [J]. Mater. Sci. Eng., 2010, A527: 1383
63 Lee S Y, Wang H, Gharghouri M A, et al. Deformation behavior of solid-solution-strengthened Mg-9 wt.% Al alloy: In situ neutron diffraction and elastic-viscoplastic self-consistent modeling [J]. Acta Mater., 2014, 73: 139
64 Gong W, Aizawa K, Harjo S, et al. Deformation behavior of as-cast and as-extruded Mg97Zn1Y2 alloys during compression, as tracked by in situ neutron diffraction [J]. Int. J. Plast., 2018, 111: 288
65 Gong W, Kawasaki T, Zheng R X, et al. Compressive deformation behavior of AZ31 alloy at 21K: An in-situ neutron diffraction study [J]. Scr. Mater., 2023, 225: 115161
66 Harjo S, Gong W, Aizawa K, et al. Effect of extrusion ratio in hot-extrusion on kink deformation during compressive deformation in an αMg/LPSO dual-phase magnesium alloy monitored by in situ neutron diffraction [J]. Mater. Trans., 2023, 64: 766
67 Agnew S R, Brown D W, Tomé C N. Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction [J]. Acta Mater., 2006, 54: 4841
68 Máthis K, Csiszár G, Čapek J, et al. Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured magnesium polycrystals—Comparison of experimental and modeling results [J]. Int. J. Plast., 2015, 72: 127
69 Čapek J, Máthis K, Clausen B, et al. Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium [J]. Acta Mater., 2017, 130: 319
70 Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium [J]. Mater. Sci. Eng., 2005, A399: 1
71 Clausen B, Tomé C N, Brown D W, et al. Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg [J]. Acta Mater., 2008, 56: 2456
72 Agnew S R, Mulay R P, Polesak III F J, et al. In situ neutron diffraction and polycrystal plasticity modeling of a Mg-Y-Nd-Zr alloy: Effects of precipitation on individual deformation mechanisms [J]. Acta Mater., 2013, 61: 3769
73 Gong W, Zheng R X, Harjo S, et al. In-situ observation of twinning and detwinning in AZ31 alloy [J]. J. Magnes. Alloy., 2022, 10: 3418
74 Wu L, Jain A, Brown D W, et al. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A [J]. Acta Mater., 2008, 56: 688
75 Wu L, Agnew S R, Brown D W, et al. Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A [J]. Acta Mater., 2008, 56: 3699
76 Wu W, An K, Huang L, et al. Deformation dynamics study of a wrought magnesium alloy by real-time in situ neutron diffraction [J]. Scr. Mater., 2013, 69: 358
77 Wu W, Qiao H, An K, et al. Investigation of deformation dynamics in a wrought magnesium alloy [J]. Int. J. Plast., 2014, 62: 105
78 Wu W, Liaw P K, An K. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction [J]. Acta Mater., 2015, 85: 343
79 Turner P A, Tomé C N. A study of residual stresses in Zircaloy-2 with rod texture [J]. Acta Metall. Mater., 1994, 42: 4143
80 Agnew S R, Tomé C N, Brown D W, et al. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling [J]. Scr. Mater., 2003, 48: 1003
81 Máthis K, Nyilas K, Axt A, et al. The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction [J]. Acta Mater., 2004, 52: 2889
82 Ungár T, Castelnau O, Ribárik G, et al. Grain to grain slip activity in plastically deformed Zr determined by X-ray micro-diffraction line profile analysis [J]. Acta Mater., 2007, 55: 1117
83 Wang M, Xu X Y, Wang H Y, et al. Evolution of dislocation and twin densities in a Mg alloy at quasi-static and high strain rates [J]. Acta Mater., 2020, 201: 102
84 Tomota Y, Sato S, Harjo S. Recent progress of line-profile analyses for neutron or X-ray diffraction [J]. Tetsu Hagané, 2017, 103: 73
84 友田陽, 佐藤 成男. . ハルヨステファヌス中性子・X線回折ラインプロファイル解析の最近の進歩 [J]. 鉄と鋼, 2017, 103: 73
85 Li Y Z, Huang M X. A Method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction [J]. Acta Metall. Sin., 2020, 56: 487
doi: 10.11900/0412.1961.2020.00016
85 李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法 [J]. 金属学报, 2020, 56: 487
doi: 10.11900/0412.1961.2020.00016
86 Xu F, Holt R A, Daymond M R, et al. Development of internal strains in textured Zircaloy-2 during uni-axial deformation [J]. Mater. Sci. Eng., 2008, A488: 172
87 Daymond M R, Holt R A, Cai S, et al. Texture inheritance and variant selection through an hcp-bcc-hcp phase transformation [J]. Acta Mater., 2010, 58: 4053
88 Cai S, Daymond M R, Holt R A. Deformation of high β-phase fraction Zr-Nb alloys at room temperature [J]. Acta Mater., 2012, 60: 3355
89 Long F, Xu F, Daymond M R. Temperature dependence of the activity of deformation modes in an HCP zirconium alloy [J]. Metall. Mater. Trans., 2013, 44A: 4183
90 Abdolvand H, Daymond M R, Mareau C. Incorporation of twinning into a crystal plasticity finite element model: Evolution of lattice strains and texture in Zircaloy-2 [J]. Int. J. Plast., 2011, 27: 1721
91 Warwick J L W, Jones N G, Rahman K M, et al. Lattice strain evolution during tensile and compressive loading of CP Ti [J]. Acta Mater., 2012, 60: 6720
92 Gloaguen D, Oum G, Legrand V, et al. Experimental and theoretical studies of intergranular strain in an alpha titanium alloy during plastic deformation [J]. Acta Mater., 2013, 61: 5779
93 Lee M S, Kawasaki T, Yamashita T, et al. In-situ neutron diffraction study of lattice deformation behaviour of commercially pure titanium at cryogenic temperature [J]. Sci. Rep., 2022, 12: 3719
94 Wang Z Q, Stoica A D, Ma D, et al. Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction: Application to additive manufacturing [J]. Mater. Sci. Eng., 2017, A707: 585
95 Cho K, Morioka R, Harjo S, et al. Study on formation mechanism of {332} <113> deformation twinning in metastable β-type Ti alloy focusing on stress-induced α" martensite phase [J]. Scr. Mater., 2020, 177: 106
96 Kim D K, Woo W, Hwang J H, et al. Stress partitioning behavior of an AlSi10Mg alloy produced by selective laser melting during tensile deformation using in situ neutron diffraction [J]. J. Alloys Compd., 2016, 686: 281
97 Zhang X X, Andrä H, Harjo S, et al. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation [J]. Mater. Des., 2021, 198: 109339
98 Zhang X X, Knoop D, Andrä H, et al. Multiscale constitutive modeling of additively manufactured Al-Si-Mg alloys based on measured phase stresses and dislocation density [J]. Int. J. Plast., 2021, 140: 102972
99 Wang B, He H Y, Naeem M, et al. Deformation of CoCrFeNi high entropy alloy at large strain [J]. Scr. Mater., 2018, 155: 54
100 Wang Y Q, Liu B, Yan K, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
101 He H Y, Naeem M, Zhang F, et al. Stacking fault driven phase transformation in CrCoNi medium entropy alloy [J]. Nano Lett., 2021: 21: 1419
doi: 10.1021/acs.nanolett.0c04244 pmid: 33464087
102 Wei D X, Wang L Q, Zhang Y J, et al. Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys [J]. Acta Mater., 2022, 225: 117571
103 Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction [J]. Acta Mater., 2017, 127: 471
104 Woo W, Jeong J S, Kim D K, et al. Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction [J]. Sci. Rep., 2020, 10: 1350
doi: 10.1038/s41598-020-58273-3 pmid: 31992801
105 Kwon H, Sathiyamoorthi P, Gangaraju M K, et al. High-density nanoprecipitates and phase reversion via maraging enable ultrastrong yet strain-hardenable medium-entropy alloy [J]. Acta Mater., 2023, 248: 118810
106 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
107 Shi Y J, Li S L, Lee T L, et al. In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy [J]. Mater. Sci. Eng., 2020, A771: 138555
108 Naeem M, He H Y, Zhang F L, et al. Cooperative deformation in high-entropy alloys at ultralow temperatures [J]. Sci. Adv., 2020, 6: eaax4002
109 Yamashita T, Koga N, Kawasaki T, et al. Work hardening behavior of dual phase copper-iron alloy at low temperature [J]. Mater. Sci. Eng., 2021, A819: 141509
110 Wang Y X, Gong W, Kawasaki T, et al. In situ neutron diffraction study on the deformation behavior of the plastic inorganic semiconductor Ag2S [J]. Appl. Phys. Lett., 2023, 123: 011903
111 Su Y H, Oikawa K, Harjo S, et al. Time-of-flight neutron Bragg-edge transmission imaging of microstructures in bent steel plates [J]. Mater. Sci. Eng., 2016, A675: 19
112 Su Y H, Oikawa K, Shinohara T, et al. Time-of-flight neutron transmission imaging of martensite transformation in bent plates of a Fe-25Ni-0.4C alloy [J]. Phys. Proc., 2017, 88: 42
113 Santisteban J R, Edwards L, Fitzpatrick M E, et al. Strain imaging by Bragg edge neutron transmission [J]. Nucl. Instrum. Methods Phys. Res., 2002, 481A: 765
114 Tremsin A S, Yau T Y, Kockelmann W. Non‐destructive examination of loads in regular and self-locking Spiralock® threads through energy-resolved neutron imaging [J]. Strain, 2016, 52: 548
115 Su Y H, Oikawa K, Shinohara T, et al. Residual stress relaxation by bending fatigue in induction-hardened gear studied by neutron Bragg edge transmission imaging and X-ray diffraction [J]. Int. J. Fatigue, 2023, 174: 107729
116 Hendriks J N, Gregg A W T, Wensrich C M, et al. Bragg-edge elastic strain tomography for in situ systems from energy-resolved neutron transmission imaging [J]. Phys. Rev. Mater., 2017, 1: 053802
117 Ramadhan R S, Kockelmann W, Minniti T, et al. Characterization and application of Bragg-edge transmission imaging for strain measurement and crystallographic analysis on the IMAT beamline [J]. J. Appl. Cryst., 2019, 52: 351
doi: 10.1107/S1600576719001730
118 Tomota Y, Murakami T, Wang Y X, et al. Influence of carbon concentration and magnetic transition on the austenite lattice parameter of 30Mn-C steel [J]. Mater. Charact., 2020, 163: 110243
119 Su Y H, Oikawa K, Shinohara T, et al. Neutron Bragg-edge transmission imaging for microstructure and residual strain in induction hardened gears [J]. Sci. Rep., 2021, 11: 4155
doi: 10.1038/s41598-021-83555-9 pmid: 33603006
120 Bakhtiari M, Sadeghi F, Sato H, et al. Microstructure and texture analysis of 304 austenitic stainless steel using Bragg edge transmission imaging [J]. J. Appl. Cryst., 2023, 56: 1403
121 Busi M, Kalentics N, Morgano M, et al. Nondestructive characterization of laser powder bed fusion parts with neutron Bragg edge imaging [J]. Addit. Manuf., 2021, 39: 101848
122 Ramadhan R S, Glaser D, Soyama H, et al. Mechanical surface treatment studies by Bragg edge neutron imaging [J]. Acta Mater., 2022, 239: 118259
123 Ito D, Sato H, Odaira N, et al. Spatial distribution and preferred orientation of crystalline microstructure of lead-bismuth eutectic [J]. J. Nucl. Mater., 2022, 569: 153921
124 Oikawa K, Kiyanagi Y, Sato H, et al. Pulsed neutron imaging based crystallographic structure study of a Japanese sword made by sukemasa in the muromachi period [J]. Mater. Res. Proc., 2020, 15: 207
125 Ojima M, Ohnuma M, Suzuki J, et al. Origin of the enhanced hardness of a tempered high-nitrogen martensitic steel [J]. Scr. Mater., 2008, 59: 313
126 Ohnuma M, Suzuki J, Ohtsuka S, et al. A new method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS steel [J]. Acta Mater., 2009, 57: 5571
127 Ioannidou C, Navarro-López A, Rijkenberg A, et al. Evolution of the precipitate composition during annealing of vanadium micro-alloyed steels by in-situ SANS [J]. Acta Mater., 2020, 201: 217
128 Lawitzki R, Hassan S, Karge L, et al. Differentiation of γ'- and γ''- precipitates in Inconel 718 by a complementary study with small-angle neutron scattering and analytical microscopy [J]. Acta Mater., 2019, 163: 28
doi: 10.1016/j.actamat.2018.10.014
129 Su Y H, Morooka S, Ohnuma M, et al. Quantitative analysis of cementite spheroidization in pearlite by small-angle neutron scattering [J]. Metall. Mater. Trans., 2015, 46A: 1731
130 Chen H, Chen Z, Chen Y C, et al. Effects of nanosized precipitates on the Portevin-Le Chatelier behavior: Model prediction and experimental verification [J]. Materialia, 2022, 21: 101299
131 Chen H, Chen Y C, Tang Y F, et al. Quantitative assessment of the influence of the Portevin-Le Chatelier effect on the flow stress in precipitation hardening AlMgScZr alloys [J]. Acta Mater., 2023, 255: 119060
132 Xu J P, Xia Y G, Li Z D, et al. Multi-physics instrument: Total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2021, 1013A: 165642
133 Farrow C L, Juhas P, Liu J W, et al. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals [J]. J. Phys.: Condens. Matter., 2007, 19: 335219
134 Lamparter P, Steeb S. Structure of metallic glasses: Experiments and models [J]. Z. Naturforsch., 1996, 51A: 983
135 Lan S, Zhu L, Wu Z D, et al. A medium-range structure motif linking amorphous and crystalline states [J]. Nat. Mater., 2021, 20: 1347
doi: 10.1038/s41563-021-01011-5 pmid: 34017117
136 Guo W, Dmowski W, Noh J Y, et al. Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study [J]. Metall. Mater. Trans., 2013, 44A: 1994
137 Nygård M M, Sławiński W A, Ek G, et al. Local order in high-entropy alloys and associated deuterides—A total scattering and Reverse Monte Carlo study [J]. Acta Mater., 2020, 199: 504
138 Owen L R, Pickering E J, Playford H Y, et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2017, 122: 11
139 Li B, Wang H, Kawakita Y, et al. Liquid-like thermal conduction in intercalated layered crystalline solids [J]. Nat. Mater., 2018, 17: 226
doi: 10.1038/s41563-017-0004-2 pmid: 29335610
140 Zhang Z, Gong W, Zhao X T, et al. Local atomic structures and lattice dynamics of inverse colossal barocaloric ammonium thiocyanate [J]. Phys. Rev. Mater., 2023, 7: 125402
141 Yang J Y, Ren W J, Zhao X G, et al. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99: 55
doi: 10.1016/j.jmst.2021.04.077
142 Hynes J T, Klinman J P, Limbach H H, et al. Hydrogen-Transfer Reactions [M]. Weinheim: Wiley-VCH, 2007: 203
143 Kofu M, Hashimoto N, Akiba H, et al. Hydrogen diffusion in bulk and nanocrystalline palladium: A quasielastic neutron scattering study [J]. Phys. Rev., 2016, 94B: 064303
144 Heuser B J, Prisk T R, Lin J L, et al. Direct measurement of hydrogen diffusivity and solubility limits in Zircaloy 2 (formula unit of ZrH0.0155) using incoherent quasi-elastic neutron scattering [J]. J. Nucl. Mater., 2019, 518: 177
doi: 10.1016/j.jnucmat.2019.02.045
145 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
146 Pan F, Ni K, Xu T, et al. Long-range ordered porous carbons produced from C60 [J]. Nature, 2023, 614: 95
[1] 董蔚霞, 姚忠正, 刘思楠, 陈国星, 王循理, 吴桢舵, 兰司. Pd-Si金属玻璃液-液相变过程的短程-中程序结构演变规律[J]. 金属学报, 2024, 60(8): 1119-1129.
[2] 柯于斌, 李彬, 段辉平. 利用小角中子核磁散射分离研究AerMet100钢中纳米析出相的形貌和成分[J]. 金属学报, 2024, 60(8): 1109-1118.
[3] 张冉, 朱士泽, 刘振宇, 柯于斌, 王东, 肖伯律, 马宗义. 时效温度对SiC/Al-Zn-Mg-Cu复合材料时效析出行为的影响[J]. 金属学报, 2024, 60(8): 1043-1054.
[4] 李亚微, 谢光, 柯于斌, 卢玉章, 黄亚奇, 张健. 小角中子散射原位研究镍基高温合金第二相析出演化行为[J]. 金属学报, 2024, 60(8): 1100-1108.
[5] 申洋, 谷征满, 王聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察[J]. 金属学报, 2024, 60(6): 802-816.
[6] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[7] 杨伟阳, 黎先浩, 赵鹏飞, 于海彬, 赵松山, 罗海文. 取向硅钢不同常化工艺下组织及抑制剂的变化[J]. 金属学报, 2024, 60(5): 605-615.
[8] 杨平, 马丹丹, 顾晨, 顾新福. 初始组织及冷轧压下量对工业低牌号电工钢相变织构及磁性能的影响[J]. 金属学报, 2024, 60(3): 377-387.
[9] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[12] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[13] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[14] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[15] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.