|
|
中子表征技术在金属结构材料研究中的应用 |
王延绪1, 龚武2, 苏玉华2, 李昺1( ) |
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2 Japan Proton Accelerator Research Complex Center, Japan Atomic Energy Agency, Tokai Ibaraki 319-1195, Japan |
|
Application of Neutron Characterization Techniques to Metallic Structural Materials |
WANG Yanxu1, GONG Wu2, SU Yuhua2, LI Bing1( ) |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 Japan Proton Accelerator Research Complex Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan |
引用本文:
王延绪, 龚武, 苏玉华, 李昺. 中子表征技术在金属结构材料研究中的应用[J]. 金属学报, 2024, 60(8): 1001-1016.
Yanxu WANG,
Wu GONG,
Yuhua SU,
Bing LI.
Application of Neutron Characterization Techniques to Metallic Structural Materials[J]. Acta Metall Sin, 2024, 60(8): 1001-1016.
1 |
Lázpita P, Barandiarán J M, Gutiérrez J, et al. Magnetic moment and chemical order in off-stoichiometric Ni-Mn-Ga ferromagnetic shape memory alloys [J]. New J. Phys., 2011, 13: 033039
|
2 |
Willis B T M, Carlile C J. Experimental Neutron Scattering [M]. Oxford: Oxford University Press, 2009: 15
|
3 |
Yu X B, Cheng Y Q, Li Y Y, et al. Neutron scattering studies of heterogeneous catalysis [J]. Chem. Rev., 2023, 123: 8638
doi: 10.1021/acs.chemrev.3c00101
pmid: 37315192
|
4 |
Haynes R, Paradowska A M, Chowdhury M A H, et al. An inert-gas furnace for neutron scattering measurements of internal stresses in engineering materials [J]. Meas. Sci. Technol., 2012, 23: 047002
|
5 |
Gao L, Han S B, Ni H J, et al. Application of neutron imaging in observing various states of matter inside lithium batteries [J]. Natl. Sci. Rev., 2023, 10: nwad238
|
6 |
Lehmann E H, Frei G, Vontobel P, et al. The energy-selective option in neutron imaging [J]. Nucl. Instrum. Methods Phys. Res., 2009, 603A: 429
|
7 |
Treimer W, Strobl M, Kardjilov N, et al. Wavelength tunable device for neutron radiography and tomography [J]. Appl. Phys. Lett., 2006, 89: 203504
|
8 |
Tamaki M. Conceptual monochromatic digital neutron radiography using continuous cold neutron beam [J]. Nucl. Instrum. Methods Phys. Res., 2005, 542A: 32
|
9 |
Kamiyama T, Sato H, Miyamoto N, et al. Energy sliced neutron tomography using neutron resonance absorption spectrometer [J]. Nucl. Instrum. Methods Phys. Res., 2009, 600A: 107
|
10 |
Tremsin A S, Rakovan J, Shinohara T, et al. Non-destructive study of bulk crystallinity and elemental composition of natural gold single crystal samples by energy-resolved neutron imaging [J]. Sci. Rep., 2017, 7: 40759
doi: 10.1038/srep40759
pmid: 28102285
|
11 |
Li B, Zhang Z D. Neutron scattering of magnetocaloric and barocaloric materials [J]. Sci. Sin. Phys., Mech. Astron., 2021, 51: 067505
|
11 |
李 昺, 张志东. 磁卡与压卡材料的中子散射 [J]. 中国科学: 物理学 力学 天文学, 2021, 51: 067505
|
12 |
An K, Skorpenske H D, Stoica A D, et al. First in situ lattice strains measurements under load at VULCAN [J]. Metall. Mater. Trans., 2011, 42A: 95
|
13 |
Harjo S, Ito T, Aizawa K, et al. Current status of engineering materials diffractometer at J-PARC [J]. Mater. Sci. Forum, 2011, 681: 443
|
14 |
Shinohara T, Kai T, Oikawa K, et al. The energy-resolved neutron imaging system, RADEN [J]. Rev. Sci. Instrum., 2020, 91: 043302
|
15 |
Isegawa K, Setoyama D, Kimura H, et al. The first application of a Gd3Al2Ga3O12:Ce single-crystal scintillator to neutron radiography [J]. J. Imaging, 2021, 7: 232
|
16 |
Kockelmann W, Minniti T, Pooley D, et al. Time-of-flight neutron imaging on IMAT@ISIS: A new user facility for materials science [J]. J. Imaging, 2018, 4: 47
|
17 |
Li X H. The new engineering material diffractometer (EMD) at CSNS [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
|
18 |
Chen J. Progress of GPPD & ERNI and their applications at CSNS [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
|
19 |
Sun G A, Liu D, Gong J, et al. The neutron scattering platform of China Mianyang Research Reactor (CMRR) and recent applications [J]. Sci. Sin. Phys., Mech. Astron., 2021, 51: 092009
|
19 |
孙光爱, 刘 栋, 龚 建 等. 中国绵阳研究堆CMRR中子散射平台及应用 [J]. 中国科学: 物理学 力学 天文学, 2021, 51: 092009
|
20 |
Wang B H, Zhong S Y, Lin H, et al. HETU: A new high-resolution stress and texture neutron diffractometer at China Mianyang Research Reactor [J]. J. Appl. Cryst., 2023, 56: 1674
|
21 |
Li T F, Wu M M, Jiao X S, et al. Current status and future prospect of neutron facilities at China advanced research reactor [J]. Nucl. Phys. Rev., 2020, 37: 364
|
21 |
李天富, 武梅梅, 焦学胜 等. 中国先进研究堆中子科学平台发展现状及展望 [J]. 原子核物理评论, 2020, 37: 364
|
22 |
He L F. The current status of neutron imaging project at CARR [R]. Dongguan: 4th Asis-Oceania Conference on Neutron Scattering, 2023
|
23 |
Onink M, Brakman C M, Tichelaar F D, et al. The lattice parameters of austenite and ferrite in Fe-C alloys as functions of carbon concentration and temperature [J]. Scr. Metall. Mater., 1993, 29: 1011
|
24 |
Tomota Y, Gong W, Harjo S, et al. Reverse austenite transformation behavior in a tempered martensite low-alloy steel studied using in situ neutron diffraction [J]. Scr. Mater., 2017, 133: 79
|
25 |
Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Mater., 2015, 85: 243
|
26 |
Dutta R K, Huizenga R M, Amirthalingam M, et al. In-situ synchrotron diffraction studies on transformation strain development in a high strength quenched and tempered structural steel—Part I. Bainitic transformation [J]. Metall. Mater. Trans., 2014, 45A: 218
|
27 |
Lin S, Borgenstam A, Stark A, et al. Effect of Si on bainitic transformation kinetics in steels explained by carbon partitioning, carbide formation, dislocation densities, and thermodynamic conditions [J]. Mater. Charact., 2022, 185: 111774
|
28 |
Xu P G, Zhang S Y, Harjo S, et al. Principal preferred orientation evaluation of steel materials using time-of-flight neutron diffraction [J]. Quantum Beam Sci., 2024, 8: 7
|
29 |
He S H, He B B, Zhu K Y, et al. Revealing the role of dislocations on the stability of retained austenite in a tempered bainite [J]. Scr. Mater., 2019, 168: 23
|
30 |
Zhang S Y, Godfrey E, Kockelmann W, et al. High-tech composites to ancient metals [J]. Mater. Today, 2009, 12: 78
|
31 |
Li L, Miyamoto G, Zhang Y J, et al. Quantitative analysis of microstructure evolution, stress partitioning and thermodynamics in the dynamic transformation of Fe-14Ni alloy [J]. J. Mater. Sci. Technol., 2024, 184: 221
doi: 10.1016/j.jmst.2023.10.037
|
32 |
Tomota Y, Wang Y X, Ohmura T, et al. In situ neutron diffraction study on ferrite and pearlite transformations for a 1.5Mn-1.5Si-0.2C steel [J]. ISIJ Int., 2018, 58: 2125
|
33 |
Plotkowski A, Saleeby K, Fancher C M, et al. Operando neutron diffraction reveals mechanisms for controlled strain evolution in 3D printing [J]. Nat. Commun., 2023, 14: 4950
doi: 10.1038/s41467-023-40456-x
pmid: 37587109
|
34 |
Wang Y X, Tomota Y, Ohmura T, et al. Real time observation of martensite transformation for a 0.4C low alloyed steel by neutron diffraction [J]. Acta Mater., 2020, 184: 30
|
35 |
Aaronson H I, Enomoto M, Lee J K. Mechanisms of Diffusional Phase Transformations in Metals and Alloys [M]. Boca Raton: CRC Press, 2010: 601
|
36 |
Liu J B, Chen C X, Feng Q, et al. Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel: An in-situ TEM study [J]. Mater. Sci. Eng., 2017, A703: 236
|
37 |
Fukui D, Nakada N, Onaka S. Internal residual stress originated from Bain strain and its effect on hardness in Fe-Ni martensite [J]. Acta Mater., 2020, 196: 660
|
38 |
Villa M, Niessen F, Somers M A J. In situ investigation of the evolution of lattice strain and stresses in austenite and martensite during quenching and tempering of steel [J]. Metall. Mater. Trans., 2018, 49A: 28
|
39 |
Huyghe P, Caruso M, Collet J L, et al. Into the quenching & partitioning of a 0.2C steel: An in-situ synchrotron study [J]. Mater. Sci. Eng., 2019, A743: 175
|
40 |
Wang Y X, Tomota Y, Ohmura T, et al. Evolution of austenite lattice parameter during isothermal transformation in a 0.4 C low alloyed steel [J]. Materialia, 2023, 27: 101685
|
41 |
Gong W, Harjo S, Tomota Y, et al. Lattice parameters of austenite and martensite during transformation for Fe-18Ni alloy investigated through in-situ neutron diffraction [J]. Acta Mater., 2023, 250: 118860
|
42 |
Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J]. Proc. Roy. Soc., 1957, 241A: 376
|
43 |
Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta Metall., 1973, 21: 571
|
44 |
Shirai Y, Araki H, Mori T, et al. Positron annihilation study of lattice defects induced by hydrogen absorption in some hydrogen storage materials [J]. J. Alloys Compd., 2002, 330-332: 125
|
45 |
Chalermkarnnon P, Araki H, Shirai Y. Excess vacancies induced by disorder-order phase transformation in Ni3Fe [J]. Mater. Trans., 2002, 43: 1486
|
46 |
Shibata A, Takeda Y, Park N, et al. Nature of dynamic ferrite transformation revealed by in-situ neutron diffraction analysis during thermomechanical processing [J]. Scr. Mater., 2019, 165: 44
|
47 |
Li S L, Li Y, Wang Y K, et al. Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology [J]. Acta Metall. Sin., 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
|
47 |
李时磊, 李 阳, 王友康 等. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价 [J]. 金属学报, 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
|
48 |
Schmank M J, Krawitz A D. Measurement of a stress gradient through the bulk of an aluminum alloy using neutrons [J]. Metall. Trans., 1982, 13A: 1069
|
49 |
MacEwen S R, Faber J, Turner A P L. The use of time-of-flight neutron diffraction to study grain interaction stresses [J]. Acta Metall., 1983, 31: 657
|
50 |
Allen A J, Bourke M A M, Dawes S, et al. The analysis of internal strains measured by neutron diffraction in Al/SiC metal matrix composites [J]. Acta Metall. Mater., 1992, 40: 2361
|
51 |
Prangnell P B, Downes T, Withers P J, et al. An examination of the mean stress contribution to the Bauschinger effect by neutron diffraction [J]. Mater. Sci. Eng., 1995, A197: 215
|
52 |
Zhai H Y, Liu C H, Shang X Q, et al. Measuring texture-component-dependent stress of CuZn39Pb2 by neutron diffraction [J]. Int. J. Mech. Sci., 2024, 270: 109109
|
53 |
Gharghouri M A, Weatherly G C, Embury J D, et al. Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction [J]. Philos. Mag., 1999, 79A: 1671
|
54 |
Aizawa K, Gong W, Harjo S, et al. In-situ neutron diffraction study on tensile behavior of LPSO Mg-Zn-Y alloys [J]. Mater. Trans., 2013, 54: 1083
|
55 |
Harjo S, Aizawa K, Gong W, et al. Neutron diffraction monitoring of as-cast Mg97Zn1Y2 during compression and tension [J]. Mater. Trans., 2020, 61: 828
|
56 |
Zheng R X, Gong W, Du J P, et al. Rediscovery of Hall-Petch strengthening in bulk ultrafine grained pure Mg at cryogenic temperature: A combined in-situ neutron diffraction and electron microscopy study [J]. Acta Mater., 2022, 238: 118243
|
57 |
Harjo S, Gong W, Aizawa K, et al. Strengthening of αMg and long-period stacking ordered phases in a Mg-Zn-Y alloy by hot-extrusion with low extrusion ratio [J]. Acta Mater., 2023, 255: 119029
|
58 |
Hagihara K, Mayama T, Yamasaki M, et al. Contributions of multimodal microstructure in the deformation behavior of extruded Mg alloys containing LPSO phase [J]. Int. J. Plast., 2024, 173: 103865
|
59 |
Muránsky O, Carr D G, Barnett M R, et al. Investigation of deformation mechanisms involved in the plasticity of AZ31 Mg alloy: In situ neutron diffraction and EPSC modelling [J]. Mater. Sci. Eng., 2008, A496: 14
|
60 |
Muránsky O, Carr D G, Šittner P, et al. In situ neutron diffraction investigation of deformation twinning and pseudoelastic-like behaviour of extruded AZ31 magnesium alloy [J]. Int. J. Plast., 2009, 25: 1107
|
61 |
Muránsky O, Barnett M R, Carr D G, et al. Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission [J]. Acta Mater., 2010, 58: 1503
|
62 |
Muránsky O, Barnett M R, Luzin V, et al. On the correlation between deformation twinning and Lüders-like deformation in an extruded Mg alloy: In situ neutron diffraction and EPSC.4 modelling [J]. Mater. Sci. Eng., 2010, A527: 1383
|
63 |
Lee S Y, Wang H, Gharghouri M A, et al. Deformation behavior of solid-solution-strengthened Mg-9 wt.% Al alloy: In situ neutron diffraction and elastic-viscoplastic self-consistent modeling [J]. Acta Mater., 2014, 73: 139
|
64 |
Gong W, Aizawa K, Harjo S, et al. Deformation behavior of as-cast and as-extruded Mg97Zn1Y2 alloys during compression, as tracked by in situ neutron diffraction [J]. Int. J. Plast., 2018, 111: 288
|
65 |
Gong W, Kawasaki T, Zheng R X, et al. Compressive deformation behavior of AZ31 alloy at 21K: An in-situ neutron diffraction study [J]. Scr. Mater., 2023, 225: 115161
|
66 |
Harjo S, Gong W, Aizawa K, et al. Effect of extrusion ratio in hot-extrusion on kink deformation during compressive deformation in an αMg/LPSO dual-phase magnesium alloy monitored by in situ neutron diffraction [J]. Mater. Trans., 2023, 64: 766
|
67 |
Agnew S R, Brown D W, Tomé C N. Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction [J]. Acta Mater., 2006, 54: 4841
|
68 |
Máthis K, Csiszár G, Čapek J, et al. Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured magnesium polycrystals—Comparison of experimental and modeling results [J]. Int. J. Plast., 2015, 72: 127
|
69 |
Čapek J, Máthis K, Clausen B, et al. Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium [J]. Acta Mater., 2017, 130: 319
|
70 |
Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium [J]. Mater. Sci. Eng., 2005, A399: 1
|
71 |
Clausen B, Tomé C N, Brown D W, et al. Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg [J]. Acta Mater., 2008, 56: 2456
|
72 |
Agnew S R, Mulay R P, Polesak III F J, et al. In situ neutron diffraction and polycrystal plasticity modeling of a Mg-Y-Nd-Zr alloy: Effects of precipitation on individual deformation mechanisms [J]. Acta Mater., 2013, 61: 3769
|
73 |
Gong W, Zheng R X, Harjo S, et al. In-situ observation of twinning and detwinning in AZ31 alloy [J]. J. Magnes. Alloy., 2022, 10: 3418
|
74 |
Wu L, Jain A, Brown D W, et al. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A [J]. Acta Mater., 2008, 56: 688
|
75 |
Wu L, Agnew S R, Brown D W, et al. Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A [J]. Acta Mater., 2008, 56: 3699
|
76 |
Wu W, An K, Huang L, et al. Deformation dynamics study of a wrought magnesium alloy by real-time in situ neutron diffraction [J]. Scr. Mater., 2013, 69: 358
|
77 |
Wu W, Qiao H, An K, et al. Investigation of deformation dynamics in a wrought magnesium alloy [J]. Int. J. Plast., 2014, 62: 105
|
78 |
Wu W, Liaw P K, An K. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction [J]. Acta Mater., 2015, 85: 343
|
79 |
Turner P A, Tomé C N. A study of residual stresses in Zircaloy-2 with rod texture [J]. Acta Metall. Mater., 1994, 42: 4143
|
80 |
Agnew S R, Tomé C N, Brown D W, et al. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling [J]. Scr. Mater., 2003, 48: 1003
|
81 |
Máthis K, Nyilas K, Axt A, et al. The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction [J]. Acta Mater., 2004, 52: 2889
|
82 |
Ungár T, Castelnau O, Ribárik G, et al. Grain to grain slip activity in plastically deformed Zr determined by X-ray micro-diffraction line profile analysis [J]. Acta Mater., 2007, 55: 1117
|
83 |
Wang M, Xu X Y, Wang H Y, et al. Evolution of dislocation and twin densities in a Mg alloy at quasi-static and high strain rates [J]. Acta Mater., 2020, 201: 102
|
84 |
Tomota Y, Sato S, Harjo S. Recent progress of line-profile analyses for neutron or X-ray diffraction [J]. Tetsu Hagané, 2017, 103: 73
|
84 |
友田陽, 佐藤 成男. . ハルヨステファヌス中性子・X線回折ラインプロファイル解析の最近の進歩 [J]. 鉄と鋼, 2017, 103: 73
|
85 |
Li Y Z, Huang M X. A Method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction [J]. Acta Metall. Sin., 2020, 56: 487
doi: 10.11900/0412.1961.2020.00016
|
85 |
李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法 [J]. 金属学报, 2020, 56: 487
doi: 10.11900/0412.1961.2020.00016
|
86 |
Xu F, Holt R A, Daymond M R, et al. Development of internal strains in textured Zircaloy-2 during uni-axial deformation [J]. Mater. Sci. Eng., 2008, A488: 172
|
87 |
Daymond M R, Holt R A, Cai S, et al. Texture inheritance and variant selection through an hcp-bcc-hcp phase transformation [J]. Acta Mater., 2010, 58: 4053
|
88 |
Cai S, Daymond M R, Holt R A. Deformation of high β-phase fraction Zr-Nb alloys at room temperature [J]. Acta Mater., 2012, 60: 3355
|
89 |
Long F, Xu F, Daymond M R. Temperature dependence of the activity of deformation modes in an HCP zirconium alloy [J]. Metall. Mater. Trans., 2013, 44A: 4183
|
90 |
Abdolvand H, Daymond M R, Mareau C. Incorporation of twinning into a crystal plasticity finite element model: Evolution of lattice strains and texture in Zircaloy-2 [J]. Int. J. Plast., 2011, 27: 1721
|
91 |
Warwick J L W, Jones N G, Rahman K M, et al. Lattice strain evolution during tensile and compressive loading of CP Ti [J]. Acta Mater., 2012, 60: 6720
|
92 |
Gloaguen D, Oum G, Legrand V, et al. Experimental and theoretical studies of intergranular strain in an alpha titanium alloy during plastic deformation [J]. Acta Mater., 2013, 61: 5779
|
93 |
Lee M S, Kawasaki T, Yamashita T, et al. In-situ neutron diffraction study of lattice deformation behaviour of commercially pure titanium at cryogenic temperature [J]. Sci. Rep., 2022, 12: 3719
|
94 |
Wang Z Q, Stoica A D, Ma D, et al. Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction: Application to additive manufacturing [J]. Mater. Sci. Eng., 2017, A707: 585
|
95 |
Cho K, Morioka R, Harjo S, et al. Study on formation mechanism of {332} <113> deformation twinning in metastable β-type Ti alloy focusing on stress-induced α" martensite phase [J]. Scr. Mater., 2020, 177: 106
|
96 |
Kim D K, Woo W, Hwang J H, et al. Stress partitioning behavior of an AlSi10Mg alloy produced by selective laser melting during tensile deformation using in situ neutron diffraction [J]. J. Alloys Compd., 2016, 686: 281
|
97 |
Zhang X X, Andrä H, Harjo S, et al. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation [J]. Mater. Des., 2021, 198: 109339
|
98 |
Zhang X X, Knoop D, Andrä H, et al. Multiscale constitutive modeling of additively manufactured Al-Si-Mg alloys based on measured phase stresses and dislocation density [J]. Int. J. Plast., 2021, 140: 102972
|
99 |
Wang B, He H Y, Naeem M, et al. Deformation of CoCrFeNi high entropy alloy at large strain [J]. Scr. Mater., 2018, 155: 54
|
100 |
Wang Y Q, Liu B, Yan K, et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
|
101 |
He H Y, Naeem M, Zhang F, et al. Stacking fault driven phase transformation in CrCoNi medium entropy alloy [J]. Nano Lett., 2021: 21: 1419
doi: 10.1021/acs.nanolett.0c04244
pmid: 33464087
|
102 |
Wei D X, Wang L Q, Zhang Y J, et al. Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys [J]. Acta Mater., 2022, 225: 117571
|
103 |
Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction [J]. Acta Mater., 2017, 127: 471
|
104 |
Woo W, Jeong J S, Kim D K, et al. Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction [J]. Sci. Rep., 2020, 10: 1350
doi: 10.1038/s41598-020-58273-3
pmid: 31992801
|
105 |
Kwon H, Sathiyamoorthi P, Gangaraju M K, et al. High-density nanoprecipitates and phase reversion via maraging enable ultrastrong yet strain-hardenable medium-entropy alloy [J]. Acta Mater., 2023, 248: 118810
|
106 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602
pmid: 26830651
|
107 |
Shi Y J, Li S L, Lee T L, et al. In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy [J]. Mater. Sci. Eng., 2020, A771: 138555
|
108 |
Naeem M, He H Y, Zhang F L, et al. Cooperative deformation in high-entropy alloys at ultralow temperatures [J]. Sci. Adv., 2020, 6: eaax4002
|
109 |
Yamashita T, Koga N, Kawasaki T, et al. Work hardening behavior of dual phase copper-iron alloy at low temperature [J]. Mater. Sci. Eng., 2021, A819: 141509
|
110 |
Wang Y X, Gong W, Kawasaki T, et al. In situ neutron diffraction study on the deformation behavior of the plastic inorganic semiconductor Ag2S [J]. Appl. Phys. Lett., 2023, 123: 011903
|
111 |
Su Y H, Oikawa K, Harjo S, et al. Time-of-flight neutron Bragg-edge transmission imaging of microstructures in bent steel plates [J]. Mater. Sci. Eng., 2016, A675: 19
|
112 |
Su Y H, Oikawa K, Shinohara T, et al. Time-of-flight neutron transmission imaging of martensite transformation in bent plates of a Fe-25Ni-0.4C alloy [J]. Phys. Proc., 2017, 88: 42
|
113 |
Santisteban J R, Edwards L, Fitzpatrick M E, et al. Strain imaging by Bragg edge neutron transmission [J]. Nucl. Instrum. Methods Phys. Res., 2002, 481A: 765
|
114 |
Tremsin A S, Yau T Y, Kockelmann W. Non‐destructive examination of loads in regular and self-locking Spiralock® threads through energy-resolved neutron imaging [J]. Strain, 2016, 52: 548
|
115 |
Su Y H, Oikawa K, Shinohara T, et al. Residual stress relaxation by bending fatigue in induction-hardened gear studied by neutron Bragg edge transmission imaging and X-ray diffraction [J]. Int. J. Fatigue, 2023, 174: 107729
|
116 |
Hendriks J N, Gregg A W T, Wensrich C M, et al. Bragg-edge elastic strain tomography for in situ systems from energy-resolved neutron transmission imaging [J]. Phys. Rev. Mater., 2017, 1: 053802
|
117 |
Ramadhan R S, Kockelmann W, Minniti T, et al. Characterization and application of Bragg-edge transmission imaging for strain measurement and crystallographic analysis on the IMAT beamline [J]. J. Appl. Cryst., 2019, 52: 351
doi: 10.1107/S1600576719001730
|
118 |
Tomota Y, Murakami T, Wang Y X, et al. Influence of carbon concentration and magnetic transition on the austenite lattice parameter of 30Mn-C steel [J]. Mater. Charact., 2020, 163: 110243
|
119 |
Su Y H, Oikawa K, Shinohara T, et al. Neutron Bragg-edge transmission imaging for microstructure and residual strain in induction hardened gears [J]. Sci. Rep., 2021, 11: 4155
doi: 10.1038/s41598-021-83555-9
pmid: 33603006
|
120 |
Bakhtiari M, Sadeghi F, Sato H, et al. Microstructure and texture analysis of 304 austenitic stainless steel using Bragg edge transmission imaging [J]. J. Appl. Cryst., 2023, 56: 1403
|
121 |
Busi M, Kalentics N, Morgano M, et al. Nondestructive characterization of laser powder bed fusion parts with neutron Bragg edge imaging [J]. Addit. Manuf., 2021, 39: 101848
|
122 |
Ramadhan R S, Glaser D, Soyama H, et al. Mechanical surface treatment studies by Bragg edge neutron imaging [J]. Acta Mater., 2022, 239: 118259
|
123 |
Ito D, Sato H, Odaira N, et al. Spatial distribution and preferred orientation of crystalline microstructure of lead-bismuth eutectic [J]. J. Nucl. Mater., 2022, 569: 153921
|
124 |
Oikawa K, Kiyanagi Y, Sato H, et al. Pulsed neutron imaging based crystallographic structure study of a Japanese sword made by sukemasa in the muromachi period [J]. Mater. Res. Proc., 2020, 15: 207
|
125 |
Ojima M, Ohnuma M, Suzuki J, et al. Origin of the enhanced hardness of a tempered high-nitrogen martensitic steel [J]. Scr. Mater., 2008, 59: 313
|
126 |
Ohnuma M, Suzuki J, Ohtsuka S, et al. A new method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS steel [J]. Acta Mater., 2009, 57: 5571
|
127 |
Ioannidou C, Navarro-López A, Rijkenberg A, et al. Evolution of the precipitate composition during annealing of vanadium micro-alloyed steels by in-situ SANS [J]. Acta Mater., 2020, 201: 217
|
128 |
Lawitzki R, Hassan S, Karge L, et al. Differentiation of γ'- and γ''- precipitates in Inconel 718 by a complementary study with small-angle neutron scattering and analytical microscopy [J]. Acta Mater., 2019, 163: 28
doi: 10.1016/j.actamat.2018.10.014
|
129 |
Su Y H, Morooka S, Ohnuma M, et al. Quantitative analysis of cementite spheroidization in pearlite by small-angle neutron scattering [J]. Metall. Mater. Trans., 2015, 46A: 1731
|
130 |
Chen H, Chen Z, Chen Y C, et al. Effects of nanosized precipitates on the Portevin-Le Chatelier behavior: Model prediction and experimental verification [J]. Materialia, 2022, 21: 101299
|
131 |
Chen H, Chen Y C, Tang Y F, et al. Quantitative assessment of the influence of the Portevin-Le Chatelier effect on the flow stress in precipitation hardening AlMgScZr alloys [J]. Acta Mater., 2023, 255: 119060
|
132 |
Xu J P, Xia Y G, Li Z D, et al. Multi-physics instrument: Total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2021, 1013A: 165642
|
133 |
Farrow C L, Juhas P, Liu J W, et al. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals [J]. J. Phys.: Condens. Matter., 2007, 19: 335219
|
134 |
Lamparter P, Steeb S. Structure of metallic glasses: Experiments and models [J]. Z. Naturforsch., 1996, 51A: 983
|
135 |
Lan S, Zhu L, Wu Z D, et al. A medium-range structure motif linking amorphous and crystalline states [J]. Nat. Mater., 2021, 20: 1347
doi: 10.1038/s41563-021-01011-5
pmid: 34017117
|
136 |
Guo W, Dmowski W, Noh J Y, et al. Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study [J]. Metall. Mater. Trans., 2013, 44A: 1994
|
137 |
Nygård M M, Sławiński W A, Ek G, et al. Local order in high-entropy alloys and associated deuterides—A total scattering and Reverse Monte Carlo study [J]. Acta Mater., 2020, 199: 504
|
138 |
Owen L R, Pickering E J, Playford H Y, et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2017, 122: 11
|
139 |
Li B, Wang H, Kawakita Y, et al. Liquid-like thermal conduction in intercalated layered crystalline solids [J]. Nat. Mater., 2018, 17: 226
doi: 10.1038/s41563-017-0004-2
pmid: 29335610
|
140 |
Zhang Z, Gong W, Zhao X T, et al. Local atomic structures and lattice dynamics of inverse colossal barocaloric ammonium thiocyanate [J]. Phys. Rev. Mater., 2023, 7: 125402
|
141 |
Yang J Y, Ren W J, Zhao X G, et al. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99: 55
doi: 10.1016/j.jmst.2021.04.077
|
142 |
Hynes J T, Klinman J P, Limbach H H, et al. Hydrogen-Transfer Reactions [M]. Weinheim: Wiley-VCH, 2007: 203
|
143 |
Kofu M, Hashimoto N, Akiba H, et al. Hydrogen diffusion in bulk and nanocrystalline palladium: A quasielastic neutron scattering study [J]. Phys. Rev., 2016, 94B: 064303
|
144 |
Heuser B J, Prisk T R, Lin J L, et al. Direct measurement of hydrogen diffusivity and solubility limits in Zircaloy 2 (formula unit of ZrH0.0155) using incoherent quasi-elastic neutron scattering [J]. J. Nucl. Mater., 2019, 518: 177
doi: 10.1016/j.jnucmat.2019.02.045
|
145 |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413
pmid: 32381592
|
146 |
Pan F, Ni K, Xu T, et al. Long-range ordered porous carbons produced from C60 [J]. Nature, 2023, 614: 95
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|