Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1721-1730    DOI: 10.11900/0412.1961.2023.00356
  研究论文 本期目录 | 过刊浏览 |
超高速激光原位熔覆Ti(C, B)/Ni60A复合涂层的界面特征与表面磨损机理
徐一斐1,2, 张楠1,2(), 许培鑫2, 杜博睿1,2, 史华2, 王淼辉2
1 北京机科国创轻量化科学研究院有限公司 北京 100083
2 中机新材料研究院(郑州)有限公司 郑州 450001
Interfacial Characterization and Surface Wear Mechanism of Ti(C, B)/Ni60A Composite Coating Prepared by In Situ Extra High-Speed Laser Cladding
XU Yifei1,2, ZHANG Nan1,2(), XU Peixin2, DU Borui1,2, SHI Hua2, WANG Miaohui2
1 Beijing National Innovation Institute of Lightweight Ltd., Beijing 100083, China
2 China Machinery Institute of Advanced Materials Co. Ltd., Zhengzhou 450001, China
引用本文:

徐一斐, 张楠, 许培鑫, 杜博睿, 史华, 王淼辉. 超高速激光原位熔覆Ti(C, B)/Ni60A复合涂层的界面特征与表面磨损机理[J]. 金属学报, 2024, 60(12): 1721-1730.
Yifei XU, Nan ZHANG, Peixin XU, Borui DU, Hua SHI, Miaohui WANG. Interfacial Characterization and Surface Wear Mechanism of Ti(C, B)/Ni60A Composite Coating Prepared by In Situ Extra High-Speed Laser Cladding[J]. Acta Metall Sin, 2024, 60(12): 1721-1730.

全文: PDF(3278 KB)   HTML
摘要: 

为缓解H13钢表面超高速激光熔覆(EHLA)再制造Ni60A涂层的界面应力梯度,改善涂层的可熔覆性,提升涂层表面的耐磨性,本工作将超高速激光熔覆技术与直接反应合成(DRS)技术相耦合,在H13钢表面成功原位制备出组织均匀、无缺陷的Ti(C, B)/Ni60A复合涂层,并与EHLA制备的Ni60A涂层进行了对比分析。基于纳米压痕的Giannakopoulos & Suresh (G&S)能量法获得了熔覆界面的残余应力分布;利用SEM、EDS、EBSD研究了涂层显微组织、相组成和熔覆界面特征;利用聚焦离子束(FIB)获取了带有涂层表面磨损信息的样品,并采用双球差透射电镜(DSA-TEM)分析了涂层浅表区磨损特征,通过对比显微硬度变化,揭示了Ti(C, B)/Ni60A复合涂层浅表区的磨损机理。结果表明:由于Ti和B4C发生原位反应放出约670 kJ的Joule热影响,Ti(C, B)/Ni60A复合涂层熔覆界面宽度达到22 μm,是EHLA制备Ni60A涂层熔覆界面(2 μm)的11倍,有效降低了Ti(C, B)/Ni60A复合涂层界面区的应力梯度,缓解了界面两侧的应力失配。然而,获得的Ti(C, B)/Ni60A复合涂层表面硬度仅为360~400 HV0.2,不足Ni60A涂层表面硬度的1/2,而其磨损失重却处于同一量级,这一方面归因于原位自生的大量TiCB相及少量Ti3B4相等支撑Ti(C, B)/Ni60A复合涂层基体,实现减摩耐磨作用;另一方面归因于磨损浅表区180 nm范围内涂层材料在滑擦塑性流变-热-力三场耦合作用下形成了等轴化超细晶粒组织,从而动态强化了磨损表面。

关键词 超高速激光熔覆复合涂层残余应力磨损原位反应    
Abstract

H13 die steel easily fails under friction and wear due to its low purity, poor homogeneity, and unreasonable matching between strength and toughness. The preparation of wear-reducing and wear-resistant coatings through extra high-speed laser cladding (EHLA) is important for the restoration and remanufacturing of metallurgical spare parts. This method provides an solution for the in-service life extension of H13 die steel. However, cracking at the EHLA interfaces induced by residual stresses due to low substrate dilution rates, remarkable cooling rates, and differences in thermal expansion between dissimilar metals acts as a limitation to the application of EHLA. This work aimed to alleviate stress mutation at the fusion interface of EHLA coatings, improve the fusibility of EHLA coatings on H13 die steel, and obtain wear-reducing and abrasion-resistant features on the surfaces of EHLA coatings. In this study, a Ti(C, B)/Ni60A composite coating was prepared with almost defect-free microstructures on an H13 die steel substrate by coupling EHLA with direct reaction synthesis to introduce an in situ exothermic reaction into EHLA cladding to achieve the above aims. The obtained material was compared with the pure Ni60A coating prepared through EHLA alone. Residual stress distribution at the fusion interface of the Ti(C, B)/Ni60A composite and Ni60A coatings was determined using the Giannakopoulos & Suresh (G&S) energy method based on nanoindentation. SEM, EDS, and EBSD were performed to investigate the microstructures, phase compositions, and characteristics of the two coatings and cladding interfaces. A focused ion beam setup was used to obtain information on the superficial wear of the two samples, and double spherical aberration TEM was conducted to analyze the superficial wear characteristics of the two coatings. The superficial wear mechanism of the Ti(C, B)/Ni60A composite coating was determined along with the changes in the surface microhardness of the two coatings.Results revealed that the Ti(C, B)/Ni60A composite coating interface was affected by the emission of approximately 670 kJ Joule heat by the in situ reaction of Ti and B4C. The interfacial width of the coatings reached 22 μm, which was 11 times that of the Ni60A coating prepared through EHLA (2 μm). This increase effectively reduced the stress gradient in the interfacial region and alleviated the stress mismatch on both sides of the interface. However, the surface hardness of the Ti(C, B)/Ni60A composite coating was only 360-400 HV0.2, which was less than half of that of the Ni60A coating. The wear losses of the two materials were in the same order of magnitude owing to the support provided to the Ti(C, B)/Ni60A composite coating matrix by the in situ authigenic TiCB, Ti3B4, and other phases. Such support reduced abrasion and conferred wear resistance. The above observation was also a result of the formation of equiaxed ultrafine grains at a depth of 180 nm below the wear surface area through the coupling of the plastic rheology-heat-force fields. This phenomenon dynamically strengthened the worn surface.

Key wordsextra high-speed laser cladding    composite coating    residual stress    wear    in situ reaction
收稿日期: 2023-08-23     
ZTFLH:  TG456.7  
基金资助:国家重点研发计划项目(2021YFB3702003);国家自然科学基金项目(51975240);北京市自然科学基金项目(2222093);中国机械科学研究总院集团技术发展基金项目(812201Q9)
通讯作者: 张 楠,giftzn@163.com,主要从事金属材料连接、增材制造/修复等工程技术研究
Corresponding author: ZHANG Nan, senior engineer, Tel: (0371)55012882, E-mail: giftzn@163.com
作者简介: 徐一斐,男,1990年生,硕士
图1  预合金粉末形貌
PointMaterialPreparation methodParticleMass fraction / %
size / μmNiCrMoSiFeNbTiVZrAlCB
1Ni60AVIGA15-5369.7716.60-4.405.54-----0.882.81
2TA185PREP≤ 15----6.51-82.598.85-2.05--
3B4CCarbothermal reduction1-5------0.100.050.050.8032.966.1
表1  预合金粉末的制备方法、粒径尺寸及图1中点1~3的EDS结果
图2  Ti(C, B)/Ni60A复合涂层界面区形貌和Ni元素分布及Ni60A涂层界面区形貌
图3  Ni60A涂层的背散射电子(BSE)像、Ti(C, B)/Ni60A复合涂层柱状晶和等轴晶的BSE像及对应的EBSD和核平均取向差(kernel average misorientation,KAM)图
图4  超高速激光熔覆涂层截面的残余应力分布
图5  Ti(C, B)/Ni60A复合涂层、Ni60A涂层和H13钢的表面磨损形貌
图6  基于聚焦离子束(FIB)制样的Ti(C, B)/Ni60A复合涂层双球差透射电镜(DSA-TEM)像及其内部原位反应颗粒相分析
图7  基于FIB制样的Ni60A涂层磨损浅表区DSA-TEM像,高分辨像及其选定区的快速Fourier逆变换与快速Fourier变换
1 Li F Q, Feng X Y, Chen Y B. Influence of WC content on microstructure of WC/Ni60A laser cladding layer [J]. Chin. J. Laser., 2016, 43: 0403009
1 李福泉, 冯鑫友, 陈彦宾. WC含量对WC/Ni60A激光熔覆层微观组织的影响 [J]. 中国激光, 2016, 43: 0403009
2 Tan C, Ma D S, Wang H K, et al. Failure analysis of a die casting die made of H13 steel [J]. Mater. Mech. Eng., 2016, 40(01): 106
2 谭 成, 马党参, 王华昆 等. H13钢压铸模具的失效分析 [J]. 机械工程材料, 2016, 40(01): 106
3 Schopphoven T, Gasser A, Wissenbach K, et al. Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying [J]. J. Laser Appl., 2016, 28: 022501
4 Raykis O. Alternative with a future: High-speed laser metal deposition replaces hard chrome plating [J]. Laser Tech. J., 2017, 14: 28
5 Lampa C, Smirnov I. High speed laser cladding of an iron based alloy developed for hard chrome replacement [J]. J. Laser Appl., 2019, 31: 022511
6 Shen B W, Du B R, Wang M H, et al. Comparison on microstructure and properties of stainless steel layer formed by extreme high-speed and conventional laser melting deposition [J]. Front. Mater., 2019, 6: 248
7 Yuan W Y, Li R F, Chen Z H, et al. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings [J]. Surf. Coat. Technol., 2020, 405: 126582
8 Asghar O, Lou L Y, Yasir M, et al. Enhanced tribological properties of LA43M magnesium alloy by Ni60 coating via ultra-high-speed laser cladding [J]. Coatings, 2020, 10: 638
9 Dong H, Han Y, Fu A Q, et al. Microstructure and corrosion resistance of Ni/stainless steel surfacing layer deposited via high-speed laser cladding [J]. Surf. Technol., 2019, 48(5): 21
9 董 会, 韩 燕, 付安庆 等. 快速激光熔覆Ni/不锈钢堆焊层组织及耐蚀性能研究 [J]. 表面技术, 2019, 48(5): 21
10 Qiao Y X, Huang J, Huang D, et al. Effects of laser scanning speed on microstructure, microhardness, and corrosion behavior of laser cladding Ni45 coatings [J]. J. Chem., 2020, 2020: 1438473
11 Yang J X, Bai B, Ke H, et al. Effect of metallurgical behavior on microstructure and properties of FeCrMoMn coatings prepared by high-speed laser cladding [J]. Opt. Laser Technol., 2021, 144: 107431
12 Wu Z B. Study on crack and porosity control methods of laser cladding Ni60A alloy coating [D]. Dalian: Dalian University of Technology, 2019
12 吴祖鹏. Ni60A合金激光熔覆裂纹气孔控制方法研究 [D]. 大连: 大连理工大学, 2019
13 Zhang N, Xu Y F, Wang M H, et al. M2 coating prepared by ultra-high speed laser cladding: Microstructure and interfacial residual stress [J]. Mater. Today Commun., 2023, 35: 105638
14 Zhu W X. Study on crack suppression of Ni60B coating by laser cladding [D]. Dalian: Dalian University of Technology, 2022
14 朱玟旭. 激光熔覆Ni60B涂层裂纹抑制研究 [D]. 大连: 大连理工大学, 2022
15 Bendaoudi S E, Bounazef M, Djeffal A. Influences of TiC impurities on dry-sliding wear of polycrystalline ceramic [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2022, 37: 570
16 Fan J Z, Shen W X, Zhang Z F, et al. Properties of B4C-TiB2 ceramics prepared by spark plasma sintering [J]. Chin. Phys., 2021, 30B: 038105
17 Chen L, Sun Y Z, Li L, et al. Improvement of high temperature oxidation resistance of additively manufactured TiC/inconel 625 nanocomposites by laser shock peening treatment [J]. Add. Manuf., 2020, 34: 101276
18 Chen L, Zhang X Z, Wu Y, et al. Effect of surface morphology and microstructure on the hot corrosion behavior of TiC/IN625 coatings prepared by extreme high-speed laser cladding [J]. Corros. Sci., 2022, 201: 110271
19 Giannakopoulos A E, Suresh S. Determination of elastoplastic properties by instrumented sharp indentation [J]. Scr. Mater., 1999, 40: 1191
20 Du B R, Zhang N, Hou X D, et al. (Ti, Nb)(C, B)/IN625 in-situ reactive coating prepared by ultra-high-speed laser cladding: Interfacial characterization, residual stress and surface wear mechanisms [J]. Coatings, 2023, 13: 2099
21 Guo Y M, Ye F X, Qi H, et al. Research status and development of ultra-high speed laser cladding [J]. China Surf. Eng., 2022, 35(06): 39
21 郭永明, 叶福兴, 祁 航. 超高速激光熔覆技术研究现状及发展趋势 [J]. 中国表面工程, 2022, 35(06): 39
22 Li L Q, Shen F M, Zhou Y D, et al. Comparative study of stainless steel AISI 431 coatings prepared by extreme-high-speed and conventional laser cladding [J]. J. Laser Appl., 2019, 31: 042009
23 Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method [J]. J. Mater. Sci., 2006, 41: 763
24 Chen S P. Diffusion bonding mechanism and properties of the joints between gradient cermets and metals bonding by the FAPAS process [D]. Taiyuan: Taiyuan University of Technology, 2010
24 陈少平. 梯度金属陶瓷与金属电场辅助扩散连接的机理及界面性能研究 [D]. 太原: 太原理工大学, 2010
25 Zhang N, Meng Q S, Chen S P, et al. TiC-TiB2-Ni/TiAl/Ti gradient functionally materials synthesized by in-situ sunthesis via field-activated and pressure-assisted synthesis [J]. J. Funct. Mater., 2010, 41: 1497
25 张 楠, 孟庆森, 陈少平 等. 电场激活压力辅助法原位合成TiC-TiB2-Ni/TiAl/Ti功能梯度材料 [J]. 功能材料, 2010, 41: 1497
26 Zhou J L, Shen F, Liu J, et al. Thermoelastic rotating contact of an FGM coating with temperature-dependent and arbitrary varying properties [J]. Sci. China Technol. Sc., 2023, 66: 1038
27 Aziz S B, Dewan M W, Huggett D J, et al. Impact of friction stir welding (FSW) process parameters on thermal modeling and heat generation of aluminum alloy joints [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 869
28 Zuo L S, Zhao X R, Li Z Y, et al. A review of friction stir joining of SiCp/Al composites [J]. Chin. J. Aeronaut., 2020, 33: 792
29 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 213
29 胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第 3版, 上海: 上海交通大学出版社, 2010: 213
30 Li Y F, Gao Y M, Shi F J, et al. Three-body abrasive wear behavior of iron matrix composite reinforced with cemented carbide particles [J]. J. Xi'an Jiaotong Univ., 2009, 43(05): 56
30 李烨飞, 高义民, 史芳杰 等. 硬质合金颗粒增强铁基复合材料的三体磨料磨损性能 [J]. 西安交通大学学报, 2009, 43(05): 56
31 Chen S P, Meng Q S, Zhang N, et al. Graded materials of (TiB2)pNi with nickel substrate prepared by field-activated pressure-assisted synthesis process [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2010, 25: 39
[1] 谷黎明, 冯效铭, 于朝, 张峻凡, 刘振宇, 何伦华, 卢怀乐, 李小虎, 王晨, 张晓东, 肖伯律, 马宗义. 深冷循环对SiC/Al复合材料宏微观残余应力的影响[J]. 金属学报, 2024, 60(8): 1031-1042.
[2] 李彪, 张龙, 颜廷毅, 付华萌, 袁旭东, 文明月, 张宏伟, 李宏, 张海峰. 热处理工艺和W丝特性对W丝增强锆基非晶复合材料残余应力的影响[J]. 金属学报, 2024, 60(8): 1055-1063.
[3] 林皓, 李建, 杨钊龙, 钟圣怡. 中子衍射应力分析技术及其应用进展[J]. 金属学报, 2024, 60(8): 1017-1030.
[4] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[5] 王瀚铭, 杜银, 裴旭辉, 王海丰. 共晶组织强化NbMoZrVSi x 难熔高熵合金的摩擦磨损性能及磨损机理[J]. 金属学报, 2024, 60(7): 937-946.
[6] 熊毅, 栾泽伟, 马云飞, 厉勇, 查小琴. 超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响[J]. 金属学报, 2024, 60(5): 627-638.
[7] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[8] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[9] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[10] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[11] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[12] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[13] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[14] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[15] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.