|
|
超高速激光原位熔覆Ti(C, B)/Ni60A复合涂层的界面特征与表面磨损机理 |
徐一斐1,2, 张楠1,2( ), 许培鑫2, 杜博睿1,2, 史华2, 王淼辉2 |
1 北京机科国创轻量化科学研究院有限公司 北京 100083 2 中机新材料研究院(郑州)有限公司 郑州 450001 |
|
Interfacial Characterization and Surface Wear Mechanism of Ti(C, B)/Ni60A Composite Coating Prepared by In Situ Extra High-Speed Laser Cladding |
XU Yifei1,2, ZHANG Nan1,2( ), XU Peixin2, DU Borui1,2, SHI Hua2, WANG Miaohui2 |
1 Beijing National Innovation Institute of Lightweight Ltd., Beijing 100083, China 2 China Machinery Institute of Advanced Materials Co. Ltd., Zhengzhou 450001, China |
引用本文:
徐一斐, 张楠, 许培鑫, 杜博睿, 史华, 王淼辉. 超高速激光原位熔覆Ti(C, B)/Ni60A复合涂层的界面特征与表面磨损机理[J]. 金属学报, 2024, 60(12): 1721-1730.
Yifei XU,
Nan ZHANG,
Peixin XU,
Borui DU,
Hua SHI,
Miaohui WANG.
Interfacial Characterization and Surface Wear Mechanism of Ti(C, B)/Ni60A Composite Coating Prepared by In Situ Extra High-Speed Laser Cladding[J]. Acta Metall Sin, 2024, 60(12): 1721-1730.
1 |
Li F Q, Feng X Y, Chen Y B. Influence of WC content on microstructure of WC/Ni60A laser cladding layer [J]. Chin. J. Laser., 2016, 43: 0403009
|
1 |
李福泉, 冯鑫友, 陈彦宾. WC含量对WC/Ni60A激光熔覆层微观组织的影响 [J]. 中国激光, 2016, 43: 0403009
|
2 |
Tan C, Ma D S, Wang H K, et al. Failure analysis of a die casting die made of H13 steel [J]. Mater. Mech. Eng., 2016, 40(01): 106
|
2 |
谭 成, 马党参, 王华昆 等. H13钢压铸模具的失效分析 [J]. 机械工程材料, 2016, 40(01): 106
|
3 |
Schopphoven T, Gasser A, Wissenbach K, et al. Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying [J]. J. Laser Appl., 2016, 28: 022501
|
4 |
Raykis O. Alternative with a future: High-speed laser metal deposition replaces hard chrome plating [J]. Laser Tech. J., 2017, 14: 28
|
5 |
Lampa C, Smirnov I. High speed laser cladding of an iron based alloy developed for hard chrome replacement [J]. J. Laser Appl., 2019, 31: 022511
|
6 |
Shen B W, Du B R, Wang M H, et al. Comparison on microstructure and properties of stainless steel layer formed by extreme high-speed and conventional laser melting deposition [J]. Front. Mater., 2019, 6: 248
|
7 |
Yuan W Y, Li R F, Chen Z H, et al. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings [J]. Surf. Coat. Technol., 2020, 405: 126582
|
8 |
Asghar O, Lou L Y, Yasir M, et al. Enhanced tribological properties of LA43M magnesium alloy by Ni60 coating via ultra-high-speed laser cladding [J]. Coatings, 2020, 10: 638
|
9 |
Dong H, Han Y, Fu A Q, et al. Microstructure and corrosion resistance of Ni/stainless steel surfacing layer deposited via high-speed laser cladding [J]. Surf. Technol., 2019, 48(5): 21
|
9 |
董 会, 韩 燕, 付安庆 等. 快速激光熔覆Ni/不锈钢堆焊层组织及耐蚀性能研究 [J]. 表面技术, 2019, 48(5): 21
|
10 |
Qiao Y X, Huang J, Huang D, et al. Effects of laser scanning speed on microstructure, microhardness, and corrosion behavior of laser cladding Ni45 coatings [J]. J. Chem., 2020, 2020: 1438473
|
11 |
Yang J X, Bai B, Ke H, et al. Effect of metallurgical behavior on microstructure and properties of FeCrMoMn coatings prepared by high-speed laser cladding [J]. Opt. Laser Technol., 2021, 144: 107431
|
12 |
Wu Z B. Study on crack and porosity control methods of laser cladding Ni60A alloy coating [D]. Dalian: Dalian University of Technology, 2019
|
12 |
吴祖鹏. Ni60A合金激光熔覆裂纹气孔控制方法研究 [D]. 大连: 大连理工大学, 2019
|
13 |
Zhang N, Xu Y F, Wang M H, et al. M2 coating prepared by ultra-high speed laser cladding: Microstructure and interfacial residual stress [J]. Mater. Today Commun., 2023, 35: 105638
|
14 |
Zhu W X. Study on crack suppression of Ni60B coating by laser cladding [D]. Dalian: Dalian University of Technology, 2022
|
14 |
朱玟旭. 激光熔覆Ni60B涂层裂纹抑制研究 [D]. 大连: 大连理工大学, 2022
|
15 |
Bendaoudi S E, Bounazef M, Djeffal A. Influences of TiC impurities on dry-sliding wear of polycrystalline ceramic [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2022, 37: 570
|
16 |
Fan J Z, Shen W X, Zhang Z F, et al. Properties of B4C-TiB2 ceramics prepared by spark plasma sintering [J]. Chin. Phys., 2021, 30B: 038105
|
17 |
Chen L, Sun Y Z, Li L, et al. Improvement of high temperature oxidation resistance of additively manufactured TiC/inconel 625 nanocomposites by laser shock peening treatment [J]. Add. Manuf., 2020, 34: 101276
|
18 |
Chen L, Zhang X Z, Wu Y, et al. Effect of surface morphology and microstructure on the hot corrosion behavior of TiC/IN625 coatings prepared by extreme high-speed laser cladding [J]. Corros. Sci., 2022, 201: 110271
|
19 |
Giannakopoulos A E, Suresh S. Determination of elastoplastic properties by instrumented sharp indentation [J]. Scr. Mater., 1999, 40: 1191
|
20 |
Du B R, Zhang N, Hou X D, et al. (Ti, Nb)(C, B)/IN625 in-situ reactive coating prepared by ultra-high-speed laser cladding: Interfacial characterization, residual stress and surface wear mechanisms [J]. Coatings, 2023, 13: 2099
|
21 |
Guo Y M, Ye F X, Qi H, et al. Research status and development of ultra-high speed laser cladding [J]. China Surf. Eng., 2022, 35(06): 39
|
21 |
郭永明, 叶福兴, 祁 航. 超高速激光熔覆技术研究现状及发展趋势 [J]. 中国表面工程, 2022, 35(06): 39
|
22 |
Li L Q, Shen F M, Zhou Y D, et al. Comparative study of stainless steel AISI 431 coatings prepared by extreme-high-speed and conventional laser cladding [J]. J. Laser Appl., 2019, 31: 042009
|
23 |
Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method [J]. J. Mater. Sci., 2006, 41: 763
|
24 |
Chen S P. Diffusion bonding mechanism and properties of the joints between gradient cermets and metals bonding by the FAPAS process [D]. Taiyuan: Taiyuan University of Technology, 2010
|
24 |
陈少平. 梯度金属陶瓷与金属电场辅助扩散连接的机理及界面性能研究 [D]. 太原: 太原理工大学, 2010
|
25 |
Zhang N, Meng Q S, Chen S P, et al. TiC-TiB2-Ni/TiAl/Ti gradient functionally materials synthesized by in-situ sunthesis via field-activated and pressure-assisted synthesis [J]. J. Funct. Mater., 2010, 41: 1497
|
25 |
张 楠, 孟庆森, 陈少平 等. 电场激活压力辅助法原位合成TiC-TiB2-Ni/TiAl/Ti功能梯度材料 [J]. 功能材料, 2010, 41: 1497
|
26 |
Zhou J L, Shen F, Liu J, et al. Thermoelastic rotating contact of an FGM coating with temperature-dependent and arbitrary varying properties [J]. Sci. China Technol. Sc., 2023, 66: 1038
|
27 |
Aziz S B, Dewan M W, Huggett D J, et al. Impact of friction stir welding (FSW) process parameters on thermal modeling and heat generation of aluminum alloy joints [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 869
|
28 |
Zuo L S, Zhao X R, Li Z Y, et al. A review of friction stir joining of SiCp/Al composites [J]. Chin. J. Aeronaut., 2020, 33: 792
|
29 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiao Tong University Press, 2010: 213
|
29 |
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第 3版, 上海: 上海交通大学出版社, 2010: 213
|
30 |
Li Y F, Gao Y M, Shi F J, et al. Three-body abrasive wear behavior of iron matrix composite reinforced with cemented carbide particles [J]. J. Xi'an Jiaotong Univ., 2009, 43(05): 56
|
30 |
李烨飞, 高义民, 史芳杰 等. 硬质合金颗粒增强铁基复合材料的三体磨料磨损性能 [J]. 西安交通大学学报, 2009, 43(05): 56
|
31 |
Chen S P, Meng Q S, Zhang N, et al. Graded materials of (TiB2)pNi with nickel substrate prepared by field-activated pressure-assisted synthesis process [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2010, 25: 39
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|