Please wait a minute...
金属学报  2023, Vol. 59 Issue (9): 1190-1200    DOI: 10.11900/0412.1961.2023.00151
  研究论文 本期目录 | 过刊浏览 |
镍基高温合金疲劳裂纹急速扩展敏感温度及成因
江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新()
北京科技大学 材料科学与工程学院 北京 100083
Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy
JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin()
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
He JIANG, Qiliang NAI, Chao XU, Xiao ZHAO, Zhihao YAO, Jianxin DONG. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. Acta Metall Sin, 2023, 59(9): 1190-1200.

全文: PDF(3311 KB)   HTML
摘要: 

对3种粉末高温合金FG4096、FGH4097和FGH4098,2种变形高温合金GH4720Li和GH4738等典型镍基高温合金,在550~800℃的宽温度范围内开展疲劳裂纹扩展实验,明确了合金在服役温度范围内的高温段存在疲劳裂纹急速扩展的敏感温度。综合考虑合金的高温组织演变和力学性能衰减对疲劳行为的影响,发现2者并非高温疲劳裂纹急剧扩展敏感温度存在的主因。不同温度下疲劳断口和裂纹扩展路径的对比以及氧化损伤分量的计算表明,高温下晶界氧化损伤是疲劳裂纹急剧扩展敏感温度存在的主要原因。采用分子动力学计算分析了不同温度下O对Ni和NiCr体系晶界强度的影响规律。通过实验和理论计算阐述了镍基高温合金疲劳裂纹扩展的高温敏感性现象和本质原因。

关键词 镍基高温合金疲劳裂纹扩展敏感温度疲劳寿命    
Abstract

Superalloys are widely used in aerospace industry owing to the excellent mechanical properties and microstructure stability at high temperatures. However, the recent developments in the aerospace industry have piled higher demands on superalloys, especially for damage tolerance at high temperatures. The fatigue crack growth rate (FCGR) is an important parameter that describes damage tolerance. Although several domestic studies on FCGR in superalloys have been reported, systematic understanding is still lacking and urgently required. Hence, this study investigated the phenomenon of sensitive temperature for rapid fatigue crack propagation in several nickel-based superalloys and reasons for its emergence by adopting a systematic program of experiments and simulations. The fatigue crack propagation behavior of FGH4096, FGH4097, and FGH4098 powder-metallurgy nickel-based superalloys, and GH4720Li and GH4738 wrought nickel-based superalloys were systematically investigated in a wide temperature range of 550-800oC using a fatigue crack propagation test. The fatigue crack propagation paths and crack microstructures after the fatigue crack propagation tests were observed. The results clearly demonstrated that the relationship between fatigue life and temperature is nonlinear. A sensitive temperature for rapid fatigue crack propagation for all investigated nickel-based superalloys was also observed, where the fatigue crack propagation rate markedly increased and fatigue life dramatically shortened. Microstructure evolution and mechanical property degradation at high temperatures were not found to be the major reasons behind the occurrence of sensitive temperature of rapid fatigue crack propagation. However, a comparison of fracture morphologies and fatigue crack propagation paths at different temperatures combined with the analysis of oxidation damage components revealed the high-temperature oxidation damage of grain boundary as the major reason for the occurrence of sensitive temperature. The contributions of fatigue damage and oxidation damage at different temperatures were compared using the classical linear superposition damage component model. The results showed that the contribution of oxidation damage increased markedly with increasing temperature. As a result, the fatigue life decreased dramatically at high temperatures and the fatigue propagation rates increased rapidly. Furthermore, the effect of O on the grain boundary strength in the Ni and NiCr system at different temperatures was investigated by molecular dynamics simulations. The grain boundary separation work decreased with increasing temperature and after which the value decreased dramaticalloy. It was concluded that the accumulation of O on the grain boundary resulted in a decrease in the grain boundary separation work and weakened the grain boundary.

Key wordsnickel-based superalloy    fatigue crack propagation    sensitive temperature    fatigue life
收稿日期: 2023-04-04     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(92160201)
作者简介: 江 河,女,1988年生,副教授,博士
SuperalloyCCrMoWAlTiCoNbZrBHfFeSiNi
FGH40960.03516.004.004.002.103.7013.000.700.0330.011---Bal.
FGH40970.0459.023.764.964.911.7415.692.590.0170.0120.30--Bal.
FGH40980.05412.653.832.183.453.7020.200.900.0500.021---Bal.
GH47380.03719.054.40-1.352.9014.20-0.0500.005-0.180.07Bal.
GH4720Li0.01215.173.001.302.424.8514.70-0.0300.012---Bal.
表1  实验用典型镍基高温合金的化学成分 (mass fraction / %)
图1  疲劳裂纹扩展速率紧凑拉伸(CT)试样示意图
图2  温度对粉末高温合金疲劳裂纹扩展行为的影响
图3  温度对变形高温合金疲劳裂纹扩展行为的影响
图4  GH4720Li合金经不同温度疲劳裂纹扩展实验后显微组织的SEM像
Temperature / oCE / MPaσy / MPa
6501921120
7001891070
7501841020
800182950
表2  GH4720Li合金不同温度下的弹性模量(E)及屈服强度(σy)
图5  GH4720Li合金修正后的da / dN-ΔKnorm曲线
图6  FGH4098合金在不同温度下疲劳断口形貌的SEM像
图7  FGH4098合金CT试样不同温度下表面疲劳裂纹扩展路径
图8  FGH4097合金不同温度下的疲劳裂纹扩展机制分析
图9  疲劳裂纹扩展过程中的等损伤载荷(ΔKe)示意图
图10  分子动力学计算用Σ5[001](210)晶界模型
图11  O浓度和温度对晶界分离功的影响
1 Zhang R, Liu P, Cui C Y, et al. Present research situation and prospect of hot working of cast & wrought superalloys for aero-engine turbine disk in China [J]. Acta Metall. Sin., 2021, 57: 1215
doi: 10.11900/0412.1961.2021.00153
1 张 瑞, 刘 鹏, 崔传勇 等. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望 [J]. 金属学报, 2021, 57: 1215
2 Zou J W, Wang W X. Development and application of P/M superalloy [J]. J. Aeronautical Mater., 2006, 26(3): 244
2 邹金文, 汪武祥. 粉末高温合金研究进展与应用 [J]. 航空材料学报, 2006, 26(3): 244
3 Gao S Y, Ge S X, Yang X H, et al. Effect of temperature on the creep behavior and mechanism of GH4169 alloy [J]. Chin. J. Eng., 2023, 45: 301
3 高圣勇, 葛树欣, 杨选宏 等. 温度对GH4169合金蠕变行为及机制的影响 [J]. 工程科学学报, 2023, 45: 301
4 Peng Z C, Liu P Y, Wang X Q, et al. Creep behavior of FGH96 superalloy at different service conditions [J]. Acta Metall. Sin., 2022, 58: 673
doi: 10.11900/0412.1961.2021.00207
4 彭子超, 刘培元, 王旭青 等. 不同服役条件下FGH96合金的蠕变特征 [J]. 金属学报, 2022, 58: 673
doi: 10.11900/0412.1961.2021.00207
5 Tian T, Hao Z B, Ge C C, et al. Effects of stress and temperature on creep behavior of a new third-generation powder metallurgy superalloy FGH100L [J]. Mater. Sci. Eng., 2020, A776: 139007
6 Huang D W, Yan X J, Li P Y, et al. Modeling of temperature influence on the fatigue crack growth behavior of superalloys [J]. Int. J. Fatigue, 2018, 110: 22
doi: 10.1016/j.ijfatigue.2017.12.020
7 Nai Q L, Dong J X, Zhang M C, et al. Temperature sensitivity of fatigue crack growth rate for GH4720Li alloy [J]. Rare Met. Mater. Eng., 2017, 46: 2915
7 佴启亮, 董建新, 张麦仓 等. GH4720Li合金疲劳裂纹扩展速率的温度敏感性 [J]. 稀有金属材料与工程, 2017, 46: 2915
8 Liu F J. Investigation on high temperature oxidation of FGH95, FGH96 and FGH97 alloys [D]. Beijing: University of Science & Technology Beijing, 2007
8 刘丰军. FGH95、FGH96和FGH97合金的高温氧化行为研究 [D]. 北京: 北京科技大学, 2007
9 Krupp U, Kane W M, Liu X Y, et al. The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718 [J]. Mater. Sci. Eng., 2003, A349: 213
10 Kruml T, Obrtlík K. Microstructure degradation in high temperature fatigue of TiAl alloy [J]. Int. J. Fatigue, 2014, 65: 28
doi: 10.1016/j.ijfatigue.2013.10.005
11 Osinkolu G A, Onofrio G, Marchionni M. Fatigue crack growth in polycrystalline IN 718 superalloy [J]. Mater. Sci. Eng., 2003, A356:425
12 Chen X, Yang Z Q, Sokolov M A, et al. Effect of creep and oxidation on reduced fatigue life of Ni-based alloy 617 at 850oC [J]. J. Nucl. Mater., 2014, 444: 393
doi: 10.1016/j.jnucmat.2013.09.030
13 Evangelou A, Soday K A, Lockyer S, et al. On the mechanism of oxidation-fatigue damage at intermediate temperatures in a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2019, A742: 648
14 Jiang R, Gao N, Reed P A S. Influence of orientation-dependent grain boundary oxidation on fatigue cracking behaviour in an advanced Ni-based superalloy [J]. J. Mater. Sci., 2015, 50: 4379
doi: 10.1007/s10853-015-8992-2
15 Miller C F, Simmons G W, Wei R P. Evidence for internal oxidation during oxygen enhanced crack growth in P/M Ni-based superalloys [J]. Scr. Mater., 2003, 48: 103
doi: 10.1016/S1359-6462(02)00355-X
16 Tucker A M, Henderson M B, Wilkinson A J, et al. High temperature fatigue crack growth in powder processed nickel based superalloy U720Li [J]. Mater. Sci. Technol., 2002, 18: 349
doi: 10.1179/026708302225001840
17 King J E. Fatigue crack propagation in nickel-base superalloys—Effects of microstructure, load ratio, and temperature [J]. Mater. Sci. Technol., 1987, 3: 750
doi: 10.1179/mst.1987.3.9.750
18 Jiang R, Everitt S, Lewandowski M, et al. Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes [J]. Int. J. Fatigue, 2014, 62: 217
doi: 10.1016/j.ijfatigue.2013.07.014
19 Jiang R, Proprentner D, Callisti M, et al. Role of oxygen in enhanced fatigue cracking in a PM Ni-based superalloy: Stress assisted grain boundary oxidation or dynamic embrittlment? [J]. Corros. Sci., 2018, 139: 141
doi: 10.1016/j.corsci.2018.05.001
20 Zhang M, Zhang Y X, Liu H, et al. Judgment criterion of the dominant factor of creep-fatigue crack growth in a nickel-based superalloy at elevated temperature [J]. Int. J. Fatigue, 2019, 118: 176
doi: 10.1016/j.ijfatigue.2018.09.007
21 Yang H Q, Bao R, Zhang J Z. An interaction crack growth model for creep-brittle superalloys with high temperature dwell time [J]. Eng. Fract. Mech., 2014, 124-125: 112
doi: 10.1016/j.engfracmech.2014.04.006
22 Tong J, Dalby S, Byrne J, et al. Creep, fatigue and oxidation in crack growth in advanced nickel base superalloys [J]. Int. J. Fatigue, 2001, 23: 897
doi: 10.1016/S0142-1123(01)00049-4
23 Li H Y, Sun J F, Hardy M C, et al. Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain PM nickel based superalloy [J]. Acta Mater., 2015, 90: 355
doi: 10.1016/j.actamat.2015.02.023
24 Všianská M, Šob M. The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel [J]. Prog. Mater. Sci., 2011, 56: 817
doi: 10.1016/j.pmatsci.2011.01.008
25 Xue H T, Luo Y Q, Tang F L, et al. Segregation behavior of alloying elements at Ni Σ5 [001](210) symmetrical tilt grain boundary in nickel-based superalloys and their stabilization and strengthening mechanisms for the grain boundary [J]. Mater. Chem. Phys., 2021, 258: 123977
doi: 10.1016/j.matchemphys.2020.123977
26 Liang C P, Wang W Q, Tang S, et al. Molecular dynamics simulation of symmetrical tilt grain boundary of body-centered cubic tungsten [J]. Chin. J. Nonferrous Met., 2021, 31: 1757
26 梁超平, 王文琦, 唐 赛 等. 钨对称倾斜晶界的分子动力学计算模拟 [J]. 中国有色金属学报, 2021, 31: 1757
27 Pham H H, Cagin T. Fundamental studies on stress-corrosion cracking in iron and underlying mechanisms [J]. Acta Mater., 2010, 58: 5142
doi: 10.1016/j.actamat.2010.05.050
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[7] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[8] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[10] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[11] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[12] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[13] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[14] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[15] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.