Please wait a minute...
金属学报  2023, Vol. 59 Issue (2): 309-318    DOI: 10.11900/0412.1961.2021.00176
  研究论文 本期目录 | 过刊浏览 |
O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析
李昕, 江河(), 姚志浩, 董建新
北京科技大学 材料科学与工程学院 北京 100083
Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr
LI Xin, JIANG He(), YAO Zhihao, DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
Xin LI, He JIANG, Zhihao YAO, Jianxin DONG. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. Acta Metall Sin, 2023, 59(2): 309-318.

全文: PDF(2997 KB)   HTML
摘要: 

利用第一性原理计算方法对高温合金基体元素Ni进行了不同氧浓度下的晶界理想拉伸实验,并结合理想分离功和差分电荷图给出了氧弱化Ni晶界的内在原因。对Co和NiCr晶界进行了类似的对比分析,给出了高温合金不同基体晶界氧化弱化的程度差异以及弱化原因。结果表明,O原子较大的电负性使得晶界处Ni—Ni金属键因电荷缺失而弱化;在拉伸过程中,当拉伸应变达到0.10,含氧Ni晶界应变完全由含氧晶界处的Ni—Ni键提供,氧的存在明显加速了Ni晶界的断裂失效过程;钴基合金晶界氧化后强度更高,比Ni有更好的抗氧化弱化性能,但断裂应变较小;NiCr基晶界强度最低,但氧化后力学性能较稳定;Ni晶界氧化弱化的原因在于O原子带来的结构畸变,而Co和NiCr基晶界氧化弱化现象主要来自电荷密度分布的改变。

关键词 高温合金晶界氧化第一性原理    
Abstract

As advanced aero engines and heavy-duty gas turbines require high service temperatures, how to maintain better performance and damage tolerance of superalloys at high service temperatures has emerged as a critical issue in the application of superalloys. Previous research has shown that temperature rise has no effect on the crack growth rate of alloys placed in a vacuum. However, in air, fatigue crack growth rate is observed to significantly depend on temperature. According to the sample fracture, which is an oxide-covered intergranular fracture, oxygen atoms significantly affect the performance of superalloys. As first-principle calculation method has advanced rapidly in recent years, it can eliminate the effect of irrelevant impurity atoms on the weakening of grain boundaries and establish a pure grain boundary system. Thus, this method is an ideal analysis tool for this research. The ideal tensile test combined with ideal separation work and charge density difference of the grain boundary in nickel-based superalloy under different oxygen concentrations, was performed using the first-principle calculation method. The internal reason for the weakening of the Ni grain boundary due to oxygen is given. A similar comparative analysis of Co and NiCr grain boundaries was also performed. Further, the cause of the oxidation and weakening of the grain boundaries is explained. The results demonstrate that the high electronegativity of O atoms weakens the Ni—Ni metal bond at the grain boundary due to the lack of charge. Further, in the stretching process, when the tensile strain reaches 0.10, the strain of the oxygen-containing Ni grain boundary is entirely provided by the Ni—Ni bond present at this boundary. The presence of oxygen significantly accelerates the fracture failure process of the Ni grain boundary. In addition, Co-based alloy has higher strength after grain boundary oxidation and has better oxidation resistance weakening performance than Ni; however, the strain of fracture is small. Although the NiCr-based grain boundary strength is the weakest, the mechanical properties after oxidation are relatively stable. The reason for the weakening of the Ni grain boundary due to oxidation is attributed to structural distortion caused by oxygen atoms, whereas the weakening of Co- and NiCr-based grain boundary due to oxidation is primarily related to changes in the charge density distribution.

Key wordssuperalloy    grain boundary    oxidation    first-principle
收稿日期: 2021-04-30     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(51771016)
作者简介: 李 昕,男,1995年生,博士生
图1  Ni的∑5(012)晶界模型
图2  氧在晶界平面的放置位置及结构弛豫后的O原子位置
图3  Ni晶界在不同氧化程度下的理想拉伸曲线
图4  晶界总长度及Ni—Ni原子间距的测量图示
图5  纯净的Ni晶界和含有一个O原子晶界在拉伸过程中晶界总宽度及晶界处Ni—Ni键长度变化
图6  不同O含量下的Ni晶界理想拉伸实验断裂瞬间的原子分布
图7  不同O含量下的Ni晶界差分电荷密度
图8  Lozovoi模型图示[25]
图9  不同O含量下的Ni晶界的理想分离功差值(Δ)
图10  不同O含量的Co晶界理想拉伸曲线
图11  不同O含量的Co晶界拉伸断裂瞬间的原子分布
图12  计算得到的不同O含量下Co晶界的理想分离功差值
图13  不同O含量下的Co晶界差分电荷密度
图14  不同O含量的NiCr晶界理想拉伸曲线
图15  不同O含量的NiCr晶界拉伸断裂瞬间的原子分布
图16  计算得到的不同O含量下NiCr晶界的理想分离功差值
图17  不同O含量下的NiCr晶界差分电荷密度
SystemTensile strength / GPaFracture strain
PureO1O2O3PureO1O2O3
Ni31.5924.7322.7517.430.300.220.280.09
Co34.8928.6924.7125.570.210.140.130.10
NiCr26.2519.6620.3621.030.160.160.170.18
表1  3种晶界理想拉伸实验结果
SystemISCCΔ
O1O2O3O1O2O3O1O2O3
Ni-11.75-7.67-9.00-1.85-5.46-5.93-13.60-13.13-14.93
Co-0.392.662.06-2.26-5.99-8.05-2.65-3.33-5.99
NiCr2.520.660.13-81.35-81.39-86.77-78.83-80.73-86.64
表2  3种晶界理想分离功差值计算结果 (eV)
1 Li H Y, Sun J F, Hardy M C, et al. Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain PM nickel based superalloy[J]. Acta Mater., 2015, 90: 355
doi: 10.1016/j.actamat.2015.02.023
2 Tong J, Dalby S, Byrne J, et al. Creep, fatigue and oxidation in crack growth in advanced nickel base superalloys[J]. Int. J. Fatigue, 2001, 23: 897
doi: 10.1016/S0142-1123(01)00049-4
3 Xu C, Nai Q L, Yao Z H, et al. Grain boundary oxidation effect of GH4738 superalloy on fatigue crack growth [J]. Acta Metall. Sin., 2017, 53: 1453
3 徐 超, 佴启亮, 姚志浩 等. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53: 1453
4 Xu C, Yao Z H, Dong J X. The sharp drop in fatigue crack growth life at a critical elevated temperature for a PM Ni-based superalloy FGH97[J]. Mater. Sci. Eng., 2019, A761: 138038
5 Ghonem H, Zheng D. Oxidation-assisted fatigue crack growth behavior in alloy 718-part I. Quantitative modeling[J]. Fatigue Fract. Eng. Mater. Struct., 1991, 14: 749
doi: 10.1111/j.1460-2695.1991.tb00703.x
6 Thomas L E, Bruemmer S M. High-resolution characterization of intergranular attack and stress corrosion cracking of alloy 600 in high-temperature primary water[J]. Corrosion, 2000, 56: 572
doi: 10.5006/1.3280561
7 Was G S, Lian K. Role of carbides in stress corrosion cracking resistance of alloy 600 and controlled-purity Ni-16% Cr-9% Fe in primary water at 360oC[J]. Corrosion, 1998, 54: 675
doi: 10.5006/1.3284887
8 Chen J, Dongare A M. Role of grain boundary character on oxygen and hydrogen segregation-induced embrittlement in polycrystalline Ni[J]. J. Mater. Sci., 2017, 52: 30
doi: 10.1007/s10853-016-0389-3
9 Yamaguchi M. First-principles study on the grain boundary embrittlement of metals by solute segregation: Part I. Iron (Fe)-solute (B, C, P, and S) systems[J]. Metall. Mater. Trans., 2011, 42A: 319
10 Yamaguchi M, Shiga M, Kaburaki H. Energetics of segregation and embrittling potency for non-transition elements in the Ni Σ5(012) symmetrical tilt grain boundary: A first-principles study[J]. J. Phys.: Condens. Matter, 2004, 16: 3933
doi: 10.1088/0953-8984/16/23/013
11 Wang L G, Wang C Y. First-principles calculations of energies of impurities and doping effects at grain boundaries in nickel[J]. Mater. Sci. Eng., 1997, A234-236: 521
12 Lefkaier I K, Bentria E T. The effect of impurities in nickel grain boundary: density functional theory study[A]. Study of Grain Boundary Character[M]. Rijeka: InTech, 2016: 1
13 Vargas-Hernández R A. Bayesian optimization for calibrating and selecting hybrid-density functional models[J]. J. Phys. Chem., 2020, 124A: 4053
14 Liu W G, Ren C L, Han H, et al. First-principles study of the effect of phosphorus on nickel grain boundary[J]. J. Appl. Phys., 2014, 115: 043706
15 Rühl S. The inorganic crystal structure database (ICSD): A tool for materials sciences[A]. Materials Informatics: Methods, Tools and Applications [M]. Weinheim: Wiley-VCH, 2019: 41
16 Rouquette J, Haines J, Fraysse G, et al. High-pressure structural and vibrational study of PbZr0.40Ti0.60O3 [J]. Inorg. Chem., 2008, 47: 9898
doi: 10.1021/ic8008688 pmid: 18841961
17 Cheng J L, Jian L, Yang K S. Aimsgb: An algorithm and open-source python library to generate periodic grain boundary structures[J]. Comput. Mater. Sci., 2018, 155: 92
doi: 10.1016/j.commatsci.2018.08.029
18 Yamaguchi M, Shiga M, Kaburaki H. Grain boundary decohesion by impurity segregation in a nickel-sulfur system[J]. Science, 2005, 307: 393
pmid: 15637235
19 Momma K, Izumi F. VESTA 3 for three‐dimensional visualization of crystal, volumetric and morphology data[J]. J. Appl. Cryst., 2011, 44: 1272
doi: 10.1107/S0021889811038970
20 Zhang M, Liu H Y, Li Q, et al. Superhard BC3 in cubic diamond structure[J]. Phys. Rev. Lett., 2015, 114: 015502
21 Li X. ArticleAttachment, 2023, https://github.com/lixin555/ArticleAttachment
22 Sun S N, Kioussis N, Lim S P, et al. Impurity effects on atomic bonding in Ni3Al[J]. Phys. Rev., 1995, 52B: 14421
23 Rice J R, Wang J S. Embrittlement of interfaces by solute segregation[J]. Mater. Sci. Eng., 1989, A107: 23
24 Razumovskiy V I, Lozovoi A Y, Razumovskii I M. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion[J]. Acta Mater., 2015, 82: 369
doi: 10.1016/j.actamat.2014.08.047
25 Lozovoi A Y, Paxton A T, Finnis M W. Structural and chemical embrittlement of grain boundaries by impurities: A general theory and first-principles calculations for copper[J]. Phys. Rev., 2006, 74B: 155416
26 Häglund J, Guillermet A F, Grimvall G, et al. Theory of bonding in transition-metal carbides and nitrides[J]. Phys. Rev., 1993, 48B: 11685
27 Abe F, Tanabe T. Change in lattice spacing of nickel by dissolved chromium and tungsten[J]. Int. J. Mater. Res., 1985, 76: 420
doi: 10.1515/ijmr-1985-760606
28 Kim J J, Shin S H, Jung J A, et al. First-principles study of interstitial diffusion of oxygen in nickel chromium binary alloy[J]. Appl. Phys. Lett., 2012, 100: 131904
doi: 10.1063/1.3696079
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[7] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[8] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[9] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[10] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[11] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[12] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[14] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[15] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.