Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 412-427    DOI: 10.11900/0412.1961.2021.00569
  综述 本期目录 | 过刊浏览 |
高温合金超限构件精密铸造技术及发展趋势
孙宝德1,2(), 王俊1,2(), 康茂东1, 汪东红1, 董安平1, 王飞3, 高海燕1, 王国祥1, 杜大帆1
1.上海交通大学 材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室 上海 200240
2.上海交通大学 金属基复合材料国家重点实验室 上海 200240
3.上海工程技术大学 材料工程学院 高温合金精密成型研究中心 上海 201620
Investment Casting Technology and Development Trend of Superalloy Ultra Limit Components
SUN Baode1,2(), WANG Jun1,2(), KANG Maodong1, WANG Donghong1, DONG Anping1, WANG Fei3, GAO Haiyan1, WANG Guoxiang1, DU Dafan1
1.Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
3.Research Center of High-Temperature Alloy Precision Forming, School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
引用本文:

孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
Baode SUN, Jun WANG, Maodong KANG, Donghong WANG, Anping DONG, Fei WANG, Haiyan GAO, Guoxiang WANG, Dafan DU. Investment Casting Technology and Development Trend of Superalloy Ultra Limit Components[J]. Acta Metall Sin, 2022, 58(4): 412-427.

全文: PDF(1267 KB)   HTML
摘要: 

高温合金铸件是航空航天重大装备中不可或缺的热端部件,正向尺寸更大、结构更复杂和壁厚更薄的方向发展,对其内部冶金质量和外部尺寸精度的要求也愈加严苛,逐渐超出了传统熔模精密铸造技术的成型极限。疏松缺陷控制、薄壁完整充型、尺寸精度和表面质量控制已经成为大型复杂薄壁高温合金铸件制造的关键难题。本文系统综述了国内外高温合金铸造工艺设计、模壳制备、全流程尺寸精度和调压成型技术的研究现状,并对基于大数据的铸造智能化发展趋势进行了分析与展望。

关键词 高温合金工艺设计熔模铸造调压铸造全流程尺寸发展趋势    
Abstract

Superalloy casting is an important hot component in major aerospace equipment. It is being developed for larger and more complex structures and thinner wall thickness than traditional superalloy casting. The requirements of its internal metallurgical quality and external dimensional accuracy are becoming increasingly stringent, gradually exceeding the manufacturing limit of traditional investment casting technology. Shrinkage porosity defect control, thin-walled complete filling, dimensional accuracy, and surface quality control have become key challenges in the manufacturing of large and complex thin-walled superalloy castings. This paper systematically summarizes the research status of the superalloy casting process design, mold shell preparation, whole process dimensional accuracy, and adjusted pressure casting technique at home and abroad. This paper also analyzes and predicts the development trend of intelligent casting based on big data.

Key wordssuperalloy    process design    investment casting    adjusted pressure casting    whole process size    development trend
收稿日期: 2021-12-20     
ZTFLH:  TG21  
基金资助:国家科技重大专项项目(J2019-VI-0004-0117);国家自然科学基金项目(51821001);国家自然科学基金项目(52090042);国家自然科学基金项目(52031012)
作者简介: 孙宝德,男,1963年生,教授
图1  润湿角测量实验和润湿角计算示意图[40]
图2  全石英与石油焦改性型壳的样品对照和厚度对比[47]
图3  使用数字光处理技术制备的陶瓷型壳及浇注的铸件[53]
1 Lü Z G. History and development trend of investment casting industry in China [J]. Foundry, 2012, 61: 347
1 吕志刚. 我国熔模精密铸造的历史回顾与发展展望 [J]. 铸造, 2012, 61: 347
2 Liu L. The progress of investment casting of nickel-based superalloys [J]. Foundry, 2012, 61: 1273
2 刘 林. 高温合金精密铸造技术研究进展 [J]. 铸造, 2012, 61: 1273
3 Xiao S L, Chen Y Y, Zhu H Y, et al. Recent advances on precision casting of large thin wall complex castings of titanium alloys [J]. Rare Met. Mater. Eng., 2006, 35: 678
3 肖树龙, 陈玉勇, 朱洪艳 等. 大型复杂薄壁钛合金铸件熔模精密铸造研究现状及发展 [J]. 稀有金属材料与工程, 2006, 35: 678
4 Barker J F. The initial years of alloy 718 a GE perspective [A]. Superalloy 718—Metallurgy and Applications [M]. Pittsburgh: The Minerals, Metals & Materials Society, 1989: 269
5 Lee P D, Chirazi A, See D. Modeling microporosity in aluminum-silicon alloys: A review [J]. J. Light Met., 2001, 1: 15
6 Stefanescu D M. Computer simulation of shrinkage related defects in metal castings—A review [J]. Int. J. Cast Met. Res., 2005, 18: 129
7 Upadhya G K, Das S, Chandra U, et al. Modelling the investment casting process: A novel approach for view factor calculations and defect prediction [J]. Appl. Math. Modell., 1995, 19: 354
8 Lin J L, Zhu S G, Yu Z Z. 3-D numerical simulation of temperature fields and thermal stress fields in solidification of steel castings and criteria of shrinkage (porosity) and hot tearing tendency [J]. Foundry, 1993, (10): 1
8 林家骝, 朱世根, 于震宗. 铸钢件凝固过程三维温度场热应力场的数值模拟与缩孔松热裂的判定 [J]. 铸造, 1993, (10): 1
9 Niyama E, Uchida T, Morikawa M, et al. A method of shrinkage prediction and its application to steel casting practice [J]. Int. Cast Met. J., 1982, 7(3): 52
10 Carlson K D, Beckermann C. Prediction of shrinkage pore volume fraction using a dimensionless Niyama criterion [J]. Metall. Mater. Trans., 2009, 40A: 163
11 Kang M D, Gao H Y, Wang J, et al. Prediction of microporosity in complex thin-wall castings with the dimensionless Niyama criterion [J]. Materials, 2013, 6: 1789
12 Lecomte-Beckers J. Study of microporosity formation in nickel-base superalloys [J]. Metall. Mater. Trans., 1988, 19A: 2341
13 Reis A, Houbaert Y, Xu Z A, et al. Modeling of shrinkage defects during solidification of long and short freezing materials [J]. J. Mater. Process. Technol., 2008, 202: 428
14 Xue X, Zhang Y B, Tian J, et al. Effect of molten metal static pressure on shrinkage criterion [J]. Foundry, 2003, 52: 426
14 薛 祥, 张跃冰, 田 竞 等. 液态金属静压力对缩孔缩松判据的影响 [J]. 铸造, 2003, 52: 426
15 Xue X, Li H W. Influence of pressure on shrinkage porosity prediction [J]. Trans. Nonferrous Met. Soc. China, 2005, 15: 217
16 Gao Z M, Jie W Q, Liu Y Q, et al. Formation mechanism and coupling prediction of microporosity and inverse segregation: A review [J]. Acta Metall. Sin., 2018, 54: 717
16 高志明, 介万奇, 刘永勤 等. 微观孔洞和逆偏析缺陷的形成机理与耦合预测研究进展 [J]. 金属学报, 2018, 54: 717
17 Khalajzadeh V, Beckermann C. Simulation of shrinkage porosity formation during alloy solidification [J]. Metall. Mater. Trans., 2020, 51A: 2239
18 Chvorinov N. Control of the solidification of castings by calculation [J]. Foundry Trade J., 1939, 70: 95
19 Caine J B. A theoretical approach to the problem of dimensioning risers [J]. AFS Trans., 1948, 56: 492
20 Wang J Z, Zhou Y H. A new method for calculating riser dimensions of steel castings using perimetrischen quotient [J]. Foundry, 1995, (12): 16
20 王济洲, 周尧和. 借助周界商求解铸钢件冒口尺寸的新方法 [J]. 铸造, 1995, (12): 16
21 Zhou Y H, Zhang Y W, Qu W T, et al. Study on insulation riser [J]. J. Northwestern Polytech.Univ., 1979, (2): 21
21 周尧和, 张延威, 曲卫涛 等. 保温冒口研究 [J]. 西北工业大学学报, 1979, (2): 21
22 Zhao Q H. Geometrical explanation and Δ—parametric method for risering [J]. Foundry Technol., 2000, (3): 10
22 赵清和. 冒口的几何诠释与Δ参数法 [J]. 铸造技术, 2000, (3): 10
23 Gao S S. Calculate riser dimensions of steel castings using cubic equation mathematical analytic method [J]. Foundry, 2000, 49: 533
23 高尚书. 三次方程解析法冒口计算 [J]. 铸造, 2000, 49: 533
24 Sun J Y, Wang D H, Liu S M, et al. Feeding system design based on data model and decision optimization for superalloy castings [J]. Spec. Cast. Nonferrous Alloys, 2019, 39: 23
24 孙锦玉, 汪东红, 刘淑梅 等. 基于数据模型与决策优化的高温合金铸件冒口设计 [J]. 特种铸造及有色合金, 2019, 39: 23
25 Campbell J. Complete Casting Handbook: Metal Casting Processes, Techniques and Design [M]. 2nd Ed., Amsterdam: Butterworth-Heinemann, 2015: 605
26 Wang C H, Hu H J, Luo J. Computer simulation of investment casting based on Procast software [J]. Foundry Technol., 2007, 28: 1360
26 王春欢, 胡红军, 罗 静. 基于Procast软件的熔模铸造计算机模拟 [J]. 铸造技术, 2007, 28: 1360
27 Zhang H F, Zhang Z M. Present status and development of precision forming technology for Ti alloy thin-walled complicated structures [J]. Aeron. Manuf. Technol., 2008, (24): 47
27 张慧芳, 张治民. 钛合金薄壁复杂构件精密成形技术现状及发展 [J]. 航空制造技术, 2008, (24): 47
28 Sun C B, Tang N, Shi F L, et al. Numerical simulation of vacuum investment casting cartridge receiver [J]. Foundry, 2010, 59: 169
28 孙长波, 唐 宁, 史凤岭 等. 机匣件真空熔模铸造的数值模拟 [J]. 铸造, 2010, 59: 169
29 Thammachot N, Dulyapraphant P, Bohez E L J. Optimal gating system design for investment casting of sterling silver by computer-assisted simulation [J]. Int. J. Adv. Manuf. Technol., 2013, 67: 797
30 Kang M D, Wang J, Li J Z, et al. Parameter acquisition method for casting solidification simulation and grid design method of pouring system [P]. Chin Pat, 202010595300.4, 2020
30 康茂东, 王 俊, 李建中 等. 铸件凝固模拟用参数采集方法及浇冒系统网格化设计方法 [P]. 中国专利, 202010595300.4, 2020)
31 Ren Z Y, Wu Y F, Xie Q F, et al. Casting defects control of a thin-walled superalloy castings [J]. Foundry, 2015, 64: 1231
31 任占友, 吴亚夫, 谢秋峰 等. 高温合金某薄壁铸件铸造缺陷工艺控制 [J]. 铸造, 2015, 64: 1231
32 Wang Z, Li J T, Kong S G, et al. Research on investment casting technique of a thin-walled seal plate casting of K424 superalloy [A]. Proceedings of the 13th China Superalloy Annual Conference [C]. Beijing: Metallurgical Industry Press, 2016: 274
32 王 祯, 李俊涛, 孔胜国 等. K424薄壁密封片铸件无余量精密铸造工艺研究 [A]. 第十三届中国高温合金年会论文集 [C]. 北京: 冶金工业出版社, 2016: 274
33 Jezierski J, Dojka R, Janerka K. Optimizing the gating system for steel castings [J]. Metals, 2018, 8: 266
34 Bruna M, Galčík M. Casting quality improvement by gating system optimization [J]. Arch. Foundry Eng., 2021, 21: 132
35 Li D Z, Campbell J, Li Y Y. Filling system for investment cast Ni-base turbine blades [J]. J. Mater. Process. Technol., 2004, 148: 310
36 Ktari A, El Mansori M. Digital twin of functional gating system in 3D printed molds for sand casting using a neural network [J]. J. Intell. Manuf., 2020, 33: 897
37 Yu J P, Wang D H, Li D Y, et al. Engineering computing and data-driven for gating system design in investment casting [J]. Int. J. Adv. Manuf. Technol., 2020, 111: 829
38 Gong C R, Li B S, Yang Y C, et al. Analysis of white matter in endosexine of ceramic mold for Ni-based high temperature alloy [J]. Foundry Technol., 2003, 24: 517
38 龚荣昌, 李邦胜, 杨永存 等. 镍基高温合金/陶瓷型壳内表面白色物质的分析 [J]. 铸造技术, 2003, 24: 517
39 Li F, Chen X Y, Zhao Y J, et al. Formation mechanism and restraining measures of burning-on of DZ22B directionally solidified blade [J]. J. Aeronaut. Mater., 2018, 38(5): 80
39 李 飞, 陈晓燕, 赵彦杰 等. DZ22B高温合金定向叶片粘砂形成机制与抑制措施 [J]. 航空材料学报, 2018, 38(5): 80
40 Li F, Chen X Y, Zhao Y J, et al. Modification of ceramic shell facecoat for inhibition of sand burning defect on DZ22B directionally solidified blades [J]. Int. J. Adv. Manuf. Technol., 2018, 99: 1771
41 Liu X F, Lou Y C, Su G Q, et al. Survey of elevated mechanical properties of ceramic shell mold in directional solidification [J]. Spec. Cast. Nonferrous Alloys, 2010, 30: 913
41 刘孝福, 娄延春, 苏贵桥 等. 定向凝固用陶瓷型壳高温力学性能研究现状 [J]. 特种铸造及有色合金, 2010, 30: 913
42 Sriramamurthy A M, Das N, Singh S. Development of investment shell moulds for precision casting of gas turbine aerofoils [J]. Met. Mater. Process, 2007, 19: 203
43 Ghosh A, Klug F J, Monaghan P H, et al. Reinforced ceramic shell mold and related processes [P]. US Pat, 6352101, 2002
44 Ghosh A, Giddings R A, Klug F J, et al. Ceramic shell mold provided with reinforcement, and related processes [P]. US Pat, 6431255, 2002
45 Naik R V, Corrigan J. Reinforced ceramic shell mold and method of making same [P]. US Pat, 6568458, 2003
46 Chen B. Dimensional stability and accuracy of investment castings [J]. Spec. Cast. Nonferrous Alloys, 2003, (1): 53
46 陈 冰. 熔模铸件的尺寸稳定性和精度 [J]. 特种铸造及有色合金, 2003, (1): 53
47 Wang F, Li F, He B, et al. Microstructure and strength of needle coke modified ceramic casting molds [J]. Ceram. Int., 2014, 40: 479
48 Wang F, Zhu G L, Li F, et al. Effect of needle coke on gas permeability of ceramic casting molds [J]. J. Shanghai Jiaotong Univ. Sci., 2018, 23: 124
49 Guo X, Li X Y, Lü Z G, et al. High temperature behavior of silica sol shell and its influencing factors [J]. Spec. Cast. Nonferrous Alloys, 2011, 31: 636
49 郭 馨, 李晓阳, 吕志刚 等. 硅溶胶型壳经高温作用后的形态和强度变化 [J]. 特种铸造及有色合金, 2011, 31: 636
50 Yuan C, Withey P A, Blackburn S. Effect of incorporation of zirconia layer upon physical and mechanical properties of investment casting ceramic shell [J]. Mater. Sci. Technol., 2013, 29: 30
51 Ji J H. Effective ways of improving shelling performance of sol silicate mold shell [J]. Spec. Cast. Nonferrous Alloys, 2010, 30: 245
51 籍君豪. 改善硅溶胶型壳脱壳性能的有效途径 [J]. 特种铸造及有色合金, 2010, 30: 245
52 Zhang J Z, Mo X M, Yuan X H. Application of precoated sand in silica sol investment casting [J]. Spec. Cast. Nonferrous Alloys, 2010, 30: 1035
52 张金智, 莫学明, 袁小红. 覆膜砂在硅溶胶熔模铸造中的应用 [J]. 特种铸造及有色合金, 2010, 30: 1035
53 Li F, Ji X, Wu Z X, et al. Digital light processing 3D printing of ceramic shell for precision casting [J]. Mater. Lett., 2020, 276: 128037
54 Chen Z W, Li D C, Zhou W Z. Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method [J]. Proc. Inst. Mech. Eng., 2012, 226B: 1249
55 Halloran J W, Tomeckova V, Gentry S, et al. Photopolymerization of powder suspensions for shaping ceramics [J]. J. Eur. Ceram. Soc., 2011, 31: 2613
56 Zocca A, Colombo P, Gomes C M, et al. Additive manufacturing of ceramics: Issues, potentialities, and opportunities [J]. J. Am. Ceram. Soc., 2015, 98: 1983
57 Wu H H, Li D C, Guo N N. Fabrication of integral ceramic mold for investment casting of hollow turbine blade based on stereolithography [J]. Rapid Prototyping J., 2009, 15: 232
58 Wu H H, Li D C, Chen X J, et al. Rapid casting of turbine blades with abnormal film cooling holes using integral ceramic casting molds [J]. Int. J. Adv. Manuf. Technol, 2010, 50: 13
59 Duan Z J. Research on the process of integrated ceramic casting mold for hollow impeller blades based on rapid prototyping [D]. Xi'an: Xi'an University of Science and Technology, 2010
59 段志军. 基于快速成型的空心叶片整体式陶瓷铸型工艺研究 [D]. 西安: 西安科技大学, 2010
60 Guo L P. Research on gel forming process and surface quality of the ceramic casting mold for the hollow turbine blades [D]. Xi'an: Xi'an University of Science and Technology, 2013
60 郭丽萍. 空心涡轮叶片陶瓷铸型凝胶成型工艺及表面质量研究 [D]. 西安: 西安科技大学, 2013
61 Zeng J M, Xu Z B, Gu H, et al. Properties of the PW-1 pattern materials [J]. Spec. Cast. Nonferrous Alloys, 2005, 25: 50
61 曾建民, 许征兵, 顾 红 等. PW-1蜡基模料的性能研究 [J]. 特种铸造及有色合金, 2005, 25: 50
62 Wu B R, Kobayashi R. Problems related to wax mold manufacture in precision casting [J]. Foundry, 1999, (12): 36
62 吴炳荣, 小林良一. 精密铸造中蜡模制造的有关问题 [J]. 铸造, 1999, (12): 36
63 Liu R M, Zhang X H, Guo Z F, et al. The effect of adding EVA on properties of model material of investment casting blade [J]. J. Mater. Eng., 1994, (11): 17
63 刘荣敏, 张鑫华, 郭振芳 等. 添加EVA对精铸叶片用模料性能的影响 [J]. 材料工程, 1994, (11): 17
64 Hao S J. Problems of wax in silica sol investment casting and application of JX001-3 pattern materials [J]. Foundry, 2009, 58: 295
64 郝树俭. 硅溶胶精铸用蜡问题与JX001-3模料的应用 [J]. 铸造, 2009, 58: 295
65 Piwonka T S, Woodbury K A, Wiest J M. Modeling casting dimensions: Effect of wax rheology and interfacial heat transfer [J]. Mater Des., 2000, 21: 365
66 Wang D H, He B, Li F, et al. Numerical simulation of the wax injection process for investment casting [J]. Mater. Manuf. Process., 2013, 28: 220
67 He X P. A study on accuracy of wax pattern in investment casting [J]. Spec. Cast. Nonferrous Alloys, 1999, (suppl. 1): 156
67 何湘平. 熔模精铸中蜡模精度的研究概况 [J]. 特种铸造及有色合金, 1999, (): 156
68 Kelkar A. Wax dimensional control with design of experiments [A]. Proceedings of the 39th Annual Technical Meeting [C]. Investment Casting Institute, 1991
69 Horacek M. Accuracy of casting manufactured by the lost wax process [J]. Foundry Trade J., 1997, (10): 423
70 Okhuysen V F, Padmanabhan K, Voigt R C. Tooling allowance practices in the investment casting industry [A]. Proceedings of the 46th Annual Technical Meeting [C]. Montvale: Investment Casting Institute, 1998
71 Yarlagadda P K D V, Hock T S. Statistical analysis on accuracy of wax patterns used in investment casting process [J]. J. Mater. Process. Technol., 2003, 138: 75
72 Singh R, Singh S, Singh G. Dimensional accuracy comparison of investment castings prepared with wax and abs patterns for bio-medical application [J]. Procedia Mater. Sci., 2014, 6: 851
73 Cellere A, Lucchetta G. Identification of crims model parameters for warpage prediction in injection moulding simulation [J]. Int. J. Mater. Form., 2010, 3: 37
74 Zheng R, Kennedy P, Phan-Thien N, et al. Thermoviscoelastic simulation of thermally and pressure-induced stresses in injection moulding for the prediction of shrinkage and warpage for fibre-reinforced thermoplastics [J]. J. Non-Newton. Fluid Mech., 1999, 84: 159
75 Campbell J. The concept of net shape for castings [J]. Mater. Des., 2000, 21: 373
76 Pattnaik S, Karunakar D B, Jha P K. Developments in investment casting process—A review [J]. J. Mater. Process. Technol., 2012, 212: 2332
77 Wang D H, He B, Li F, et al. Experimental and numerical analysis on core deflection during wax injection [J]. Mater. Manuf. Process., 2013, 28: 1209
78 Sabau A S, Viswanathan S. Material properties for predicting wax pattern dimensions in investment casting [J]. Mater. Sci. Eng., 2003, A362: 125
79 Zhang Z Y, Liang B N. The factors influencing the casting's dimension precision of molten mould during the process of making mould [J]. Mech. Res. Appl., 2002: 15(2): 15
79 张振宇, 梁补女. 制模过程中影响铸件尺寸精度的因素 [J]. 机械研究与应用, 2002, 15(2): 15
80 Chen Y H, Duan J D. Improvement of dimensional stability analysis of wax mold in investment casting [A]. China Foundry Association Annual Conference [C]. Beijing, 2012: 745
80 陈亚辉, 段继东. 熔模铸造蜡模尺寸稳定性分析改善 [A]. 第十届中国铸造协会年会会刊(论文篇) [C]. 北京, 2012: 745
81 Bonilla W, Masood S H, Iovenitti P. An investigation of wax patterns for accuracy improvement in investment cast parts [J]. Int. J. Adv. Manuf. Technol., 2001, 18: 348
82 Liao D F, Fan Z T, Jiang W M, et al. Study on the surface roughness of ceramic shells and castings in the ceramic shell casting process based on expandable pattern [J]. J. Mater. Process. Technol., 2011, 211: 1465
83 Galles D, Beckermann C. Prediction of distortions and pattern allowances during sand casting of a steel bracket [J]. Int. J. Cast Met. Res., 2017, 30: 133
84 Jin S, Liu C H, Lai X M, et al. Bayesian network approach for ceramic shell deformation fault diagnosis in the investment casting process [J]. Int. J. Adv. Manuf. Technol., 2017, 88: 663
85 Li H, Chandrashekhara K, Komaragiri S, et al. Crack prediction using nonlinear finite element analysis during pattern removal in investment casting process [J]. J. Mater. Process. Technol., 2014, 214: 1418
86 Peters F, Voigt R, Ou S Z, et al. Effect of mould expansion on pattern allowances in sand casting of steel [J]. Int. J. Cast Met. Res., 2007, 20: 275
87 Kochar V M. Geometry dependent pattern allowance prediction for castings [D]. Pennsylvania: The Pennsylvania State University, 2006
88 Peters F E. Pattern allowance prediction for steel castings [D]. Pennsylvania: The Pennsylvania State University, 1996
89 Dong Y W, Li X L, Zhao Q, et al. Modeling of shrinkage during investment casting of thin-walled hollow turbine blades [J]. J. Mater. Process. Technol., 2017, 244: 190
90 Tian J W, Bu K, Song J H, et al. Optimization of investment casting process parameters to reduce warpage of turbine blade platform in DD6 alloy [J]. China Foundry, 2017, 14: 469
91 Galles D, Lu J, Beckermann C. Determination of pattern allowances for steel castings using the finite element inverse deformation analysis [J]. Int. J. Cast Met. Res., 2019, 32: 123
92 Wang Y, Shao W Z, Zhen L, et al Flow behavior and microstructures of superalloy 718 during high temperature deformation [J]. Mater. Sci. Eng., 2008, A497: 479
93 Lewandowski M S, Overfelt R A. High temperature deformation behavior of solid and semi-solid alloy 718 [J]. Acta Mater., 1999, 47: 4695
94 Yu T, Wang D H, Wu W Y, et al. Radius dimension deviation and transfer law of fillet in investment casting superalloy [J]. Spec. Cast. Nonferrous Alloys, 2021, 41: 786
94 余 童, 汪东红, 吴文云 等. 熔模铸造高温合金圆角尺寸偏差与传递规律 [J]. 特种铸造及有色合金, 2021, 41: 786
95 Wang D H, Yu J P, Yang C L, et al. Dimensional control of ring-to-ring casting with a data-driven approach during investment casting [J]. Int. J. Adv. Manuf. Technol., 2022, 119: 691
96 Bi J Z, Qu W C, Wang H W, et al. Application and development of differential pressure casting [J]. Foundry Technol., 2000, (2): 16
96 毕鉴智, 曲万春, 王宏伟 等. 差压铸造的应用及发展 [J]. 铸造技术, 2000, (2): 16
97 Chandley G D. Use of vacuum for counter-gravity casting of metals [J]. Mater. Res. Innovat., 1999, 3: 14
98 Chandley D, Redemske J, Mikkola P, et al. Development of thin-wall stainless steel castings using countergravity process for automobile application [J]. Trans. Am. Foundrymen's Soc., 1996, 104: 903
99 Zeng J M. On the dynamic characteristics of mould-filling under countergravity [J]. J. Nanchang Inst. Aeronaut. Technol., 1995, (2): 6
99 曾建民. 反重力充型的动力学特性 [J]. 南昌航空工业学院学报, 1995, (2): 6
100 Zeng J M, Zhou Y H. Pressure-adjusting casting method [P]. Chin Pat, 88106919.1, 1989
100 曾建民, 周尧和. 一种调压铸造方法 [P]. 中国专利, 88106919.1, 1989)
101 Wang M, Zeng J M, Huang W D. Adjusted pressure casting technique for precision casting of large-scale complicated & thin-wall components [J]. Foundry Technol., 2004, 25: 352
101 王 猛, 曾建民, 黄卫东. 大型复杂薄壁铸件高品质高精度调压铸造技术 [J]. 铸造技术, 2004, 25: 352
102 Kubisch J G, Wilczynski P D. Vacuum countergravity casting apparatus and method [P]. US Pat, 5062467, 1991
103 Hebsur M G. Processing of IN- 718 lattice block castings [P]. US Pat, E-13140, 2002
104 Stefanescu D M, Grugel R N, Curreri P A. In situ resource utilization for processing of metal alloys on lunar and mars bases [A]. Proceedings of American Society of Civil Engineers Conference [C]. Albuquerque, NM, 1998: 266
105 Wang J G, Zhou Z B, Wang Y C, et al. Numerical simulation and analysis on casting process of TiAl alloy [J]. Foundry Technol., 2009, 30:1054
105 王建国, 周中波, 王一川 等. TiAl合金铸造工艺数值模拟及分析 [J]. 铸造技术, 2009, 30: 1054
106 Hong R Z, Zhou Y J, Yao W B. Effect of filling velocity on metallurgical quality of thin wall aluminium alloy casting in vacuum suction [J]. J. Mater. Eng., 2006, (suppl.1): 294
106 洪润洲, 周永江, 姚惟斌. 真空吸铸条件下充型速度对薄壁铝合金铸件内部质量的影响 [J]. 材料工程, 2006, (): 294
107 Dong X P, Huang N Y, Wu S S, et al. Rapid casting of metallic parts based on SLS plastic prototype [J]. Spec. Cast. Nonferrous Alloys, 2001, (suppl.1): 195
107 董选普, 黄乃瑜, 吴树森 等. 薄壁铝合金铸件真空差压铸造工艺的研究 [J]. 特种铸造及有色合金, 2001, (): 195
108 Luo H J, Jie W Q. Analysis on filling process in counter gravity casting [J]. Foundry Technol., 2017, 38: 2188
108 罗海军, 介万奇. 反重力铸造的充型过程研究 [J]. 铸造技术, 2017, 38: 2188
109 Sanitas A, Bedel M, El Mansori M. Experimental and numerical study of section restriction effects on filling behavior in low-pressure aluminum casting [J]. J. Mater. Process. Technol., 2018, 254: 124
110 Li Y, Liu J X, Zhang Q, et al. Casting defects and microstructure distribution characteristics of aluminum alloy cylinder head with complex structure [J]. Mater. Today Commun., 2021, 27: 102416
111 Yan L, Wang M, Shan Z F, et al. Research on filling capacity of adjusted pressure casting of magnesium alloys [J]. Foundry Technol., 2005, 26: 914
111 严 力, 王 猛, 单志发 等. 镁合金调压铸造充型能力的研究 [J]. 铸造技术, 2005, 26: 914
112 Zhou Z B, Li J S, Kou H C, et al. Effects of processing parameters on filling behavior of thin-walled casting in low pressure casting [J]. Spec. Cast. Nonferrous Alloys, 2008, 28: 23
112 周中波, 李金山, 寇宏超 等. 工艺参数对低压铸造薄壁件充型能力的影响 [J]. 特种铸造及有色合金, 2008, 28: 23
113 Dong X P, Huang N Y, Wu S S. Newly developed vacuum differential pressure casting of thin-walled complicated Al-alloy castings [J]. China Foundry, 2005, 2: 102
114 Wang Z L, Ma X F, Wu J, et al. Influence of gas in mold cavity on mold-filling capacity for thin-walled aluminum alloy castings [J]. Foundry, 2012, 61: 768
114 王振岭, 马晓锋, 吴 江 等. 型腔中气体对薄壁铝合金铸件充型能力的影响 [J]. 铸造, 2012, 61: 768
115 Jiang W M, Fan Z T, Liu D J, et al. Influence of process parameters on filling ability of A356 aluminium alloy in expendable pattern shell casting with vacuum and low pressure [J]. Int. J. Cast Met. Res., 2012, 25: 47
116 Deng P K, Yang Z Y, Han J M, et al. Study on effective stress control and properties of vacuum pressure regulating casting ZL205A [J]. Foundry, 2019, 68: 1368
116 邓攀科, 杨智勇, 韩建民 等. ZL205A真空调压铸造有效应力控制与性能研究 [J]. 铸造, 2019, 68: 1368
117 Dong A P, Zhang J, Wang J, et al. Precesion casting method for high temperature alloy complex thin-walled castings [P]. Chin Pat, 201210219184.1, 2012
117 董安平, 张 佼, 王俊 等. 高温合金复杂薄壁铸件精密铸造方法 [P]. 中国专利, 201210219184.1, 2012)
118 Dong A P, Sun B D, Du D F, et al. Material for preparing ceramic liquid lift pipe, ceramic liquid lift pipe and preparation method thereof [P]. Chin Pat, 202010173538.8, 2021
118 董安平, 孙宝德, 杜大帆 等. 用于制备陶瓷升液管的材料、陶瓷升液管及其制备方法 [P]. 中国专利, 202010173538.8, 2021)
119 Dong A P, Yan N S, Zhang J, et al. Integrated high-temperature alloy pressure regulating precision casting device [P]. Chin Pat, 201410186654.8, 2014
119 董安平, 闫乃舜, 张 佼 等. 一体式高温合金调压精密铸造装置 [P]. 中国专利, 201410186654.8, 2014)
120 Garnier M. Electromagnetic processing of liquid materials in Europe [J]. ISIJ Int., 1990, 30: 1
121 Zi B T, Liu W J, Yao K F, et al. Application of electromagnetic field in materials' solidification [J]. Tianjin Metall., 2002, (5): 5
121 訾炳涛, 刘文今, 姚可夫 等. 电磁场在材料凝固过程中的应用 [J]. 天津冶金, 2002, (5): 5
122 Eskin D G, Mi J W. Solidification Processing of Metallic Alloys Under External Fields [M]. Cham: Springer, 2018: 1
123 Mikelson A E, Karklin Y K. Control of crystallization processes by means of magnetic fields [J]. J. Cryst. Growth, 1981, 52: 524
124 Yasuda H, Ohnaka I, Yamamoto Y, et al. Alignment of BiMn crystal orientation in Bi-20 at%Mn alloys by laser melting under a magnetic field [J]. Mater. Trans., 2003, 44: 2550
125 Jie J C, Yue S P, Liu J, et al. Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field [J]. Acta Mater., 2021, 208: 116747
126 Gao X P, Li X T, Qie X W, et al. Effect of ultrasonic field on the structures and mechanical properties of horizontal continuous casting ingots of Al-1%Si alloy [J]. Acta Metall. Sin., 2007, 43: 17
126 高学鹏, 李新涛, 郄喜望 等. 超声场对Al-1%Si合金水平连铸坯显微组织及力学性能的影响 [J]. 金属学报, 2007, 43: 17
127 Li T J. Electromagnetic field controls the development trend of alloy solidification [A]. 2018 China Copper Processing Industry Annual Conference and China Copper Industry Huangshi Summit Forum Collection [C]. Huangshi: CNFA, 2018: 191
127 李廷举. 电磁场控制合金凝固的发展趋势 [A]. 2018年中国铜加工产业年度大会暨中国铜产业黄石高峰论坛文集 [C]. 黄石: 中国有色金属加工工业协会, 2018: 191
128 Wang Q, Liu T, Gao A, et al. A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient [J]. Scr. Mater., 2007, 56: 1087
129 Liu T, Wang Q, Gao A, et al. Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients [J]. Scr. Mater., 2007, 57: 992
130 Zhang C, Wang Q, Gao A, et al. Effect of high magnetic field on the growth behavior of primary Sb phase in Sb-4.8%Mn hypoeutectic alloy [J]. Acta Metall. Sin., 2008, 44: 713
130 张 超, 王 强, 高 翱 等. 强磁场对Sb-4.8%Mn合金初生相生长行为的影响 [J]. 金属学报, 2008, 44: 713
131 Wang Q, Dong M, Sun J M, et al. Control of solidification process and fabrication of functional materials with high magnetic fields [J]. Acta Metall. Sin., 2018, 54: 742
131 王 强, 董 蒙, 孙金妹 等. 强磁场下合金凝固过程控制及功能材料制备 [J]. 金属学报, 2018, 54: 742
132 Wang Z Y, Wang E G, Zhang X W, et al. Analysis of meniscus fluctuation in mold for round billets by if soft-contact electromagnetic continuous casting [J]. J. Northeastern Univ. (Nat. Sci.), 2009, 30: 1282
132 王朝阳, 王恩刚, 张兴武 等. 圆坯中频电磁软接触连铸结晶器内弯月面波动分析 [J]. 东北大学学报(自然科学版), 2009, 30: 1282
133 Wang H, Wang E G, Kang L, et al. Numerical simulation of molten steel fluid flow in slab continuous casting mold [J]. Ind. Heat., 2009, 38(3): 54
133 王 浩, 王恩刚, 康 丽 等. 板坯连铸结晶器内钢液流场的数值模拟 [J]. 工业加热, 2009, 38(3): 54
134 Chen Z H, Wang E G, Zhang X W, et al. Behavior of meniscus in slab caster mold under electromagnetic field [J]. Iron Steel, 2006, 41(12): 26
134 陈芝会, 王恩刚, 张兴武 等. 电磁场作用下板坯连铸结晶器内的弯月面行为 [J]. 钢铁, 2006, 41(12): 26
135 Liu C L, Su H J, Zhang J, et al. Research progress in effect of static magnetic field on microstructure of directionally solidified Ni-based superalloy [J]. J. Mater. Eng., 2019, 47(9): 13
135 刘承林, 苏海军, 张 军 等. 静磁场对定向凝固镍基高温合金组织影响的研究进展 [J]. 材料工程, 2019, 47(9): 13
136 Liu C L, Su H J, Zhang J, et al. Effect of electromagnetic field on microstructure of Ni-based single crystal superalloys [J]. Acta Metall. Sin., 2018, 54: 1428
136 刘承林, 苏海军, 张 军 等. 电磁场对镍基单晶高温合金组织的影响 [J]. 金属学报, 2018, 54: 1428
137 Zhao Y, Su H J, Zhang J, et al. Recent progress on directional solidification of nickel-based superalloys with magnetic field [J]. Mater. Mech. Eng., 2021, 45(5): 1
137 赵 勇, 苏海军, 张 军 等. 磁场作用下镍基高温合金定向凝固的研究进展 [J]. 机械工程材料, 2021, 45(5): 1
138 Ren Z M. Progress in research of solidification of metals under a strong magnetic field [J]. Mater. China, 2010, 29(6): 40
138 任忠鸣. 强磁场下金属凝固研究进展 [J]. 中国材料进展, 2010, 29(6): 40
139 Li X, Fautrelle Y, Ren Z M, et al. Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification [J]. Acta Mater., 2009, 57: 1689
140 Du D F, Hou L, Gagnoud A, et al. Effect of an axial high magnetic field on Sn dendrite morphology of Pb-Sn alloys during directional solidification [J]. J. Alloys Compd., 2014, 588: 190
141 Ren Z M, Lei Z S, Li C J, et al. New study and development on electromagnetic field technology in metallurgical processes [J]. Acta Metall. Sin., 2020, 56: 583
141 任忠鸣, 雷作胜, 李传军 等. 电磁冶金技术研究新进展 [J]. 金属学报, 2020, 56: 583
142 Liao X L, Zhai Q J, Luo J, et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum [J]. Acta Mater., 2007, 55: 3103
143 Zhong Y Y, Bai Y M, Li G, et al. Effect of pulse magnetic oscillation waveform on solidification structure of pure aluminum [J]. Shanghai Met., 2021, 43(4): 92
143 钟玉义, 白亚鸣, 李 刚 等. 脉冲磁致振荡波形对纯铝凝固组织的影响 [J]. 上海金属, 2021, 43(4): 92
144 Li L J, Wang Y, Zhai Q J. Application of solidification homogenizing technology of pulse magneto oscillation (PMO) in special steels [J]. J. Iron Steel Res., 2021, 33: 1018
144 李莉娟, 王 郢, 翟启杰. 脉冲磁致振荡(PMO)凝固均质化技术在特殊钢中的应用 [J]. 钢铁研究学报, 2021, 33: 1018
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[8] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[9] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[10] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[11] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[12] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[13] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.