|
|
高温合金超限构件精密铸造技术及发展趋势 |
孙宝德1,2( ), 王俊1,2( ), 康茂东1, 汪东红1, 董安平1, 王飞3, 高海燕1, 王国祥1, 杜大帆1 |
1.上海交通大学 材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室 上海 200240 2.上海交通大学 金属基复合材料国家重点实验室 上海 200240 3.上海工程技术大学 材料工程学院 高温合金精密成型研究中心 上海 201620 |
|
Investment Casting Technology and Development Trend of Superalloy Ultra Limit Components |
SUN Baode1,2( ), WANG Jun1,2( ), KANG Maodong1, WANG Donghong1, DONG Anping1, WANG Fei3, GAO Haiyan1, WANG Guoxiang1, DU Dafan1 |
1.Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2.State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China 3.Research Center of High-Temperature Alloy Precision Forming, School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China |
引用本文:
孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
Baode SUN,
Jun WANG,
Maodong KANG,
Donghong WANG,
Anping DONG,
Fei WANG,
Haiyan GAO,
Guoxiang WANG,
Dafan DU.
Investment Casting Technology and Development Trend of Superalloy Ultra Limit Components[J]. Acta Metall Sin, 2022, 58(4): 412-427.
1 |
Lü Z G. History and development trend of investment casting industry in China [J]. Foundry, 2012, 61: 347
|
1 |
吕志刚. 我国熔模精密铸造的历史回顾与发展展望 [J]. 铸造, 2012, 61: 347
|
2 |
Liu L. The progress of investment casting of nickel-based superalloys [J]. Foundry, 2012, 61: 1273
|
2 |
刘 林. 高温合金精密铸造技术研究进展 [J]. 铸造, 2012, 61: 1273
|
3 |
Xiao S L, Chen Y Y, Zhu H Y, et al. Recent advances on precision casting of large thin wall complex castings of titanium alloys [J]. Rare Met. Mater. Eng., 2006, 35: 678
|
3 |
肖树龙, 陈玉勇, 朱洪艳 等. 大型复杂薄壁钛合金铸件熔模精密铸造研究现状及发展 [J]. 稀有金属材料与工程, 2006, 35: 678
|
4 |
Barker J F. The initial years of alloy 718 a GE perspective [A]. Superalloy 718—Metallurgy and Applications [M]. Pittsburgh: The Minerals, Metals & Materials Society, 1989: 269
|
5 |
Lee P D, Chirazi A, See D. Modeling microporosity in aluminum-silicon alloys: A review [J]. J. Light Met., 2001, 1: 15
|
6 |
Stefanescu D M. Computer simulation of shrinkage related defects in metal castings—A review [J]. Int. J. Cast Met. Res., 2005, 18: 129
|
7 |
Upadhya G K, Das S, Chandra U, et al. Modelling the investment casting process: A novel approach for view factor calculations and defect prediction [J]. Appl. Math. Modell., 1995, 19: 354
|
8 |
Lin J L, Zhu S G, Yu Z Z. 3-D numerical simulation of temperature fields and thermal stress fields in solidification of steel castings and criteria of shrinkage (porosity) and hot tearing tendency [J]. Foundry, 1993, (10): 1
|
8 |
林家骝, 朱世根, 于震宗. 铸钢件凝固过程三维温度场热应力场的数值模拟与缩孔松热裂的判定 [J]. 铸造, 1993, (10): 1
|
9 |
Niyama E, Uchida T, Morikawa M, et al. A method of shrinkage prediction and its application to steel casting practice [J]. Int. Cast Met. J., 1982, 7(3): 52
|
10 |
Carlson K D, Beckermann C. Prediction of shrinkage pore volume fraction using a dimensionless Niyama criterion [J]. Metall. Mater. Trans., 2009, 40A: 163
|
11 |
Kang M D, Gao H Y, Wang J, et al. Prediction of microporosity in complex thin-wall castings with the dimensionless Niyama criterion [J]. Materials, 2013, 6: 1789
|
12 |
Lecomte-Beckers J. Study of microporosity formation in nickel-base superalloys [J]. Metall. Mater. Trans., 1988, 19A: 2341
|
13 |
Reis A, Houbaert Y, Xu Z A, et al. Modeling of shrinkage defects during solidification of long and short freezing materials [J]. J. Mater. Process. Technol., 2008, 202: 428
|
14 |
Xue X, Zhang Y B, Tian J, et al. Effect of molten metal static pressure on shrinkage criterion [J]. Foundry, 2003, 52: 426
|
14 |
薛 祥, 张跃冰, 田 竞 等. 液态金属静压力对缩孔缩松判据的影响 [J]. 铸造, 2003, 52: 426
|
15 |
Xue X, Li H W. Influence of pressure on shrinkage porosity prediction [J]. Trans. Nonferrous Met. Soc. China, 2005, 15: 217
|
16 |
Gao Z M, Jie W Q, Liu Y Q, et al. Formation mechanism and coupling prediction of microporosity and inverse segregation: A review [J]. Acta Metall. Sin., 2018, 54: 717
|
16 |
高志明, 介万奇, 刘永勤 等. 微观孔洞和逆偏析缺陷的形成机理与耦合预测研究进展 [J]. 金属学报, 2018, 54: 717
|
17 |
Khalajzadeh V, Beckermann C. Simulation of shrinkage porosity formation during alloy solidification [J]. Metall. Mater. Trans., 2020, 51A: 2239
|
18 |
Chvorinov N. Control of the solidification of castings by calculation [J]. Foundry Trade J., 1939, 70: 95
|
19 |
Caine J B. A theoretical approach to the problem of dimensioning risers [J]. AFS Trans., 1948, 56: 492
|
20 |
Wang J Z, Zhou Y H. A new method for calculating riser dimensions of steel castings using perimetrischen quotient [J]. Foundry, 1995, (12): 16
|
20 |
王济洲, 周尧和. 借助周界商求解铸钢件冒口尺寸的新方法 [J]. 铸造, 1995, (12): 16
|
21 |
Zhou Y H, Zhang Y W, Qu W T, et al. Study on insulation riser [J]. J. Northwestern Polytech.Univ., 1979, (2): 21
|
21 |
周尧和, 张延威, 曲卫涛 等. 保温冒口研究 [J]. 西北工业大学学报, 1979, (2): 21
|
22 |
Zhao Q H. Geometrical explanation and Δ—parametric method for risering [J]. Foundry Technol., 2000, (3): 10
|
22 |
赵清和. 冒口的几何诠释与Δ参数法 [J]. 铸造技术, 2000, (3): 10
|
23 |
Gao S S. Calculate riser dimensions of steel castings using cubic equation mathematical analytic method [J]. Foundry, 2000, 49: 533
|
23 |
高尚书. 三次方程解析法冒口计算 [J]. 铸造, 2000, 49: 533
|
24 |
Sun J Y, Wang D H, Liu S M, et al. Feeding system design based on data model and decision optimization for superalloy castings [J]. Spec. Cast. Nonferrous Alloys, 2019, 39: 23
|
24 |
孙锦玉, 汪东红, 刘淑梅 等. 基于数据模型与决策优化的高温合金铸件冒口设计 [J]. 特种铸造及有色合金, 2019, 39: 23
|
25 |
Campbell J. Complete Casting Handbook: Metal Casting Processes, Techniques and Design [M]. 2nd Ed., Amsterdam: Butterworth-Heinemann, 2015: 605
|
26 |
Wang C H, Hu H J, Luo J. Computer simulation of investment casting based on Procast software [J]. Foundry Technol., 2007, 28: 1360
|
26 |
王春欢, 胡红军, 罗 静. 基于Procast软件的熔模铸造计算机模拟 [J]. 铸造技术, 2007, 28: 1360
|
27 |
Zhang H F, Zhang Z M. Present status and development of precision forming technology for Ti alloy thin-walled complicated structures [J]. Aeron. Manuf. Technol., 2008, (24): 47
|
27 |
张慧芳, 张治民. 钛合金薄壁复杂构件精密成形技术现状及发展 [J]. 航空制造技术, 2008, (24): 47
|
28 |
Sun C B, Tang N, Shi F L, et al. Numerical simulation of vacuum investment casting cartridge receiver [J]. Foundry, 2010, 59: 169
|
28 |
孙长波, 唐 宁, 史凤岭 等. 机匣件真空熔模铸造的数值模拟 [J]. 铸造, 2010, 59: 169
|
29 |
Thammachot N, Dulyapraphant P, Bohez E L J. Optimal gating system design for investment casting of sterling silver by computer-assisted simulation [J]. Int. J. Adv. Manuf. Technol., 2013, 67: 797
|
30 |
Kang M D, Wang J, Li J Z, et al. Parameter acquisition method for casting solidification simulation and grid design method of pouring system [P]. Chin Pat, 202010595300.4, 2020
|
30 |
康茂东, 王 俊, 李建中 等. 铸件凝固模拟用参数采集方法及浇冒系统网格化设计方法 [P]. 中国专利, 202010595300.4, 2020)
|
31 |
Ren Z Y, Wu Y F, Xie Q F, et al. Casting defects control of a thin-walled superalloy castings [J]. Foundry, 2015, 64: 1231
|
31 |
任占友, 吴亚夫, 谢秋峰 等. 高温合金某薄壁铸件铸造缺陷工艺控制 [J]. 铸造, 2015, 64: 1231
|
32 |
Wang Z, Li J T, Kong S G, et al. Research on investment casting technique of a thin-walled seal plate casting of K424 superalloy [A]. Proceedings of the 13th China Superalloy Annual Conference [C]. Beijing: Metallurgical Industry Press, 2016: 274
|
32 |
王 祯, 李俊涛, 孔胜国 等. K424薄壁密封片铸件无余量精密铸造工艺研究 [A]. 第十三届中国高温合金年会论文集 [C]. 北京: 冶金工业出版社, 2016: 274
|
33 |
Jezierski J, Dojka R, Janerka K. Optimizing the gating system for steel castings [J]. Metals, 2018, 8: 266
|
34 |
Bruna M, Galčík M. Casting quality improvement by gating system optimization [J]. Arch. Foundry Eng., 2021, 21: 132
|
35 |
Li D Z, Campbell J, Li Y Y. Filling system for investment cast Ni-base turbine blades [J]. J. Mater. Process. Technol., 2004, 148: 310
|
36 |
Ktari A, El Mansori M. Digital twin of functional gating system in 3D printed molds for sand casting using a neural network [J]. J. Intell. Manuf., 2020, 33: 897
|
37 |
Yu J P, Wang D H, Li D Y, et al. Engineering computing and data-driven for gating system design in investment casting [J]. Int. J. Adv. Manuf. Technol., 2020, 111: 829
|
38 |
Gong C R, Li B S, Yang Y C, et al. Analysis of white matter in endosexine of ceramic mold for Ni-based high temperature alloy [J]. Foundry Technol., 2003, 24: 517
|
38 |
龚荣昌, 李邦胜, 杨永存 等. 镍基高温合金/陶瓷型壳内表面白色物质的分析 [J]. 铸造技术, 2003, 24: 517
|
39 |
Li F, Chen X Y, Zhao Y J, et al. Formation mechanism and restraining measures of burning-on of DZ22B directionally solidified blade [J]. J. Aeronaut. Mater., 2018, 38(5): 80
|
39 |
李 飞, 陈晓燕, 赵彦杰 等. DZ22B高温合金定向叶片粘砂形成机制与抑制措施 [J]. 航空材料学报, 2018, 38(5): 80
|
40 |
Li F, Chen X Y, Zhao Y J, et al. Modification of ceramic shell facecoat for inhibition of sand burning defect on DZ22B directionally solidified blades [J]. Int. J. Adv. Manuf. Technol., 2018, 99: 1771
|
41 |
Liu X F, Lou Y C, Su G Q, et al. Survey of elevated mechanical properties of ceramic shell mold in directional solidification [J]. Spec. Cast. Nonferrous Alloys, 2010, 30: 913
|
41 |
刘孝福, 娄延春, 苏贵桥 等. 定向凝固用陶瓷型壳高温力学性能研究现状 [J]. 特种铸造及有色合金, 2010, 30: 913
|
42 |
Sriramamurthy A M, Das N, Singh S. Development of investment shell moulds for precision casting of gas turbine aerofoils [J]. Met. Mater. Process, 2007, 19: 203
|
43 |
Ghosh A, Klug F J, Monaghan P H, et al. Reinforced ceramic shell mold and related processes [P]. US Pat, 6352101, 2002
|
44 |
Ghosh A, Giddings R A, Klug F J, et al. Ceramic shell mold provided with reinforcement, and related processes [P]. US Pat, 6431255, 2002
|
45 |
Naik R V, Corrigan J. Reinforced ceramic shell mold and method of making same [P]. US Pat, 6568458, 2003
|
46 |
Chen B. Dimensional stability and accuracy of investment castings [J]. Spec. Cast. Nonferrous Alloys, 2003, (1): 53
|
46 |
陈 冰. 熔模铸件的尺寸稳定性和精度 [J]. 特种铸造及有色合金, 2003, (1): 53
|
47 |
Wang F, Li F, He B, et al. Microstructure and strength of needle coke modified ceramic casting molds [J]. Ceram. Int., 2014, 40: 479
|
48 |
Wang F, Zhu G L, Li F, et al. Effect of needle coke on gas permeability of ceramic casting molds [J]. J. Shanghai Jiaotong Univ. Sci., 2018, 23: 124
|
49 |
Guo X, Li X Y, Lü Z G, et al. High temperature behavior of silica sol shell and its influencing factors [J]. Spec. Cast. Nonferrous Alloys, 2011, 31: 636
|
49 |
郭 馨, 李晓阳, 吕志刚 等. 硅溶胶型壳经高温作用后的形态和强度变化 [J]. 特种铸造及有色合金, 2011, 31: 636
|
50 |
Yuan C, Withey P A, Blackburn S. Effect of incorporation of zirconia layer upon physical and mechanical properties of investment casting ceramic shell [J]. Mater. Sci. Technol., 2013, 29: 30
|
51 |
Ji J H. Effective ways of improving shelling performance of sol silicate mold shell [J]. Spec. Cast. Nonferrous Alloys, 2010, 30: 245
|
51 |
籍君豪. 改善硅溶胶型壳脱壳性能的有效途径 [J]. 特种铸造及有色合金, 2010, 30: 245
|
52 |
Zhang J Z, Mo X M, Yuan X H. Application of precoated sand in silica sol investment casting [J]. Spec. Cast. Nonferrous Alloys, 2010, 30: 1035
|
52 |
张金智, 莫学明, 袁小红. 覆膜砂在硅溶胶熔模铸造中的应用 [J]. 特种铸造及有色合金, 2010, 30: 1035
|
53 |
Li F, Ji X, Wu Z X, et al. Digital light processing 3D printing of ceramic shell for precision casting [J]. Mater. Lett., 2020, 276: 128037
|
54 |
Chen Z W, Li D C, Zhou W Z. Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method [J]. Proc. Inst. Mech. Eng., 2012, 226B: 1249
|
55 |
Halloran J W, Tomeckova V, Gentry S, et al. Photopolymerization of powder suspensions for shaping ceramics [J]. J. Eur. Ceram. Soc., 2011, 31: 2613
|
56 |
Zocca A, Colombo P, Gomes C M, et al. Additive manufacturing of ceramics: Issues, potentialities, and opportunities [J]. J. Am. Ceram. Soc., 2015, 98: 1983
|
57 |
Wu H H, Li D C, Guo N N. Fabrication of integral ceramic mold for investment casting of hollow turbine blade based on stereolithography [J]. Rapid Prototyping J., 2009, 15: 232
|
58 |
Wu H H, Li D C, Chen X J, et al. Rapid casting of turbine blades with abnormal film cooling holes using integral ceramic casting molds [J]. Int. J. Adv. Manuf. Technol, 2010, 50: 13
|
59 |
Duan Z J. Research on the process of integrated ceramic casting mold for hollow impeller blades based on rapid prototyping [D]. Xi'an: Xi'an University of Science and Technology, 2010
|
59 |
段志军. 基于快速成型的空心叶片整体式陶瓷铸型工艺研究 [D]. 西安: 西安科技大学, 2010
|
60 |
Guo L P. Research on gel forming process and surface quality of the ceramic casting mold for the hollow turbine blades [D]. Xi'an: Xi'an University of Science and Technology, 2013
|
60 |
郭丽萍. 空心涡轮叶片陶瓷铸型凝胶成型工艺及表面质量研究 [D]. 西安: 西安科技大学, 2013
|
61 |
Zeng J M, Xu Z B, Gu H, et al. Properties of the PW-1 pattern materials [J]. Spec. Cast. Nonferrous Alloys, 2005, 25: 50
|
61 |
曾建民, 许征兵, 顾 红 等. PW-1蜡基模料的性能研究 [J]. 特种铸造及有色合金, 2005, 25: 50
|
62 |
Wu B R, Kobayashi R. Problems related to wax mold manufacture in precision casting [J]. Foundry, 1999, (12): 36
|
62 |
吴炳荣, 小林良一. 精密铸造中蜡模制造的有关问题 [J]. 铸造, 1999, (12): 36
|
63 |
Liu R M, Zhang X H, Guo Z F, et al. The effect of adding EVA on properties of model material of investment casting blade [J]. J. Mater. Eng., 1994, (11): 17
|
63 |
刘荣敏, 张鑫华, 郭振芳 等. 添加EVA对精铸叶片用模料性能的影响 [J]. 材料工程, 1994, (11): 17
|
64 |
Hao S J. Problems of wax in silica sol investment casting and application of JX001-3 pattern materials [J]. Foundry, 2009, 58: 295
|
64 |
郝树俭. 硅溶胶精铸用蜡问题与JX001-3模料的应用 [J]. 铸造, 2009, 58: 295
|
65 |
Piwonka T S, Woodbury K A, Wiest J M. Modeling casting dimensions: Effect of wax rheology and interfacial heat transfer [J]. Mater Des., 2000, 21: 365
|
66 |
Wang D H, He B, Li F, et al. Numerical simulation of the wax injection process for investment casting [J]. Mater. Manuf. Process., 2013, 28: 220
|
67 |
He X P. A study on accuracy of wax pattern in investment casting [J]. Spec. Cast. Nonferrous Alloys, 1999, (suppl. 1): 156
|
67 |
何湘平. 熔模精铸中蜡模精度的研究概况 [J]. 特种铸造及有色合金, 1999, (): 156
|
68 |
Kelkar A. Wax dimensional control with design of experiments [A]. Proceedings of the 39th Annual Technical Meeting [C]. Investment Casting Institute, 1991
|
69 |
Horacek M. Accuracy of casting manufactured by the lost wax process [J]. Foundry Trade J., 1997, (10): 423
|
70 |
Okhuysen V F, Padmanabhan K, Voigt R C. Tooling allowance practices in the investment casting industry [A]. Proceedings of the 46th Annual Technical Meeting [C]. Montvale: Investment Casting Institute, 1998
|
71 |
Yarlagadda P K D V, Hock T S. Statistical analysis on accuracy of wax patterns used in investment casting process [J]. J. Mater. Process. Technol., 2003, 138: 75
|
72 |
Singh R, Singh S, Singh G. Dimensional accuracy comparison of investment castings prepared with wax and abs patterns for bio-medical application [J]. Procedia Mater. Sci., 2014, 6: 851
|
73 |
Cellere A, Lucchetta G. Identification of crims model parameters for warpage prediction in injection moulding simulation [J]. Int. J. Mater. Form., 2010, 3: 37
|
74 |
Zheng R, Kennedy P, Phan-Thien N, et al. Thermoviscoelastic simulation of thermally and pressure-induced stresses in injection moulding for the prediction of shrinkage and warpage for fibre-reinforced thermoplastics [J]. J. Non-Newton. Fluid Mech., 1999, 84: 159
|
75 |
Campbell J. The concept of net shape for castings [J]. Mater. Des., 2000, 21: 373
|
76 |
Pattnaik S, Karunakar D B, Jha P K. Developments in investment casting process—A review [J]. J. Mater. Process. Technol., 2012, 212: 2332
|
77 |
Wang D H, He B, Li F, et al. Experimental and numerical analysis on core deflection during wax injection [J]. Mater. Manuf. Process., 2013, 28: 1209
|
78 |
Sabau A S, Viswanathan S. Material properties for predicting wax pattern dimensions in investment casting [J]. Mater. Sci. Eng., 2003, A362: 125
|
79 |
Zhang Z Y, Liang B N. The factors influencing the casting's dimension precision of molten mould during the process of making mould [J]. Mech. Res. Appl., 2002: 15(2): 15
|
79 |
张振宇, 梁补女. 制模过程中影响铸件尺寸精度的因素 [J]. 机械研究与应用, 2002, 15(2): 15
|
80 |
Chen Y H, Duan J D. Improvement of dimensional stability analysis of wax mold in investment casting [A]. China Foundry Association Annual Conference [C]. Beijing, 2012: 745
|
80 |
陈亚辉, 段继东. 熔模铸造蜡模尺寸稳定性分析改善 [A]. 第十届中国铸造协会年会会刊(论文篇) [C]. 北京, 2012: 745
|
81 |
Bonilla W, Masood S H, Iovenitti P. An investigation of wax patterns for accuracy improvement in investment cast parts [J]. Int. J. Adv. Manuf. Technol., 2001, 18: 348
|
82 |
Liao D F, Fan Z T, Jiang W M, et al. Study on the surface roughness of ceramic shells and castings in the ceramic shell casting process based on expandable pattern [J]. J. Mater. Process. Technol., 2011, 211: 1465
|
83 |
Galles D, Beckermann C. Prediction of distortions and pattern allowances during sand casting of a steel bracket [J]. Int. J. Cast Met. Res., 2017, 30: 133
|
84 |
Jin S, Liu C H, Lai X M, et al. Bayesian network approach for ceramic shell deformation fault diagnosis in the investment casting process [J]. Int. J. Adv. Manuf. Technol., 2017, 88: 663
|
85 |
Li H, Chandrashekhara K, Komaragiri S, et al. Crack prediction using nonlinear finite element analysis during pattern removal in investment casting process [J]. J. Mater. Process. Technol., 2014, 214: 1418
|
86 |
Peters F, Voigt R, Ou S Z, et al. Effect of mould expansion on pattern allowances in sand casting of steel [J]. Int. J. Cast Met. Res., 2007, 20: 275
|
87 |
Kochar V M. Geometry dependent pattern allowance prediction for castings [D]. Pennsylvania: The Pennsylvania State University, 2006
|
88 |
Peters F E. Pattern allowance prediction for steel castings [D]. Pennsylvania: The Pennsylvania State University, 1996
|
89 |
Dong Y W, Li X L, Zhao Q, et al. Modeling of shrinkage during investment casting of thin-walled hollow turbine blades [J]. J. Mater. Process. Technol., 2017, 244: 190
|
90 |
Tian J W, Bu K, Song J H, et al. Optimization of investment casting process parameters to reduce warpage of turbine blade platform in DD6 alloy [J]. China Foundry, 2017, 14: 469
|
91 |
Galles D, Lu J, Beckermann C. Determination of pattern allowances for steel castings using the finite element inverse deformation analysis [J]. Int. J. Cast Met. Res., 2019, 32: 123
|
92 |
Wang Y, Shao W Z, Zhen L, et al Flow behavior and microstructures of superalloy 718 during high temperature deformation [J]. Mater. Sci. Eng., 2008, A497: 479
|
93 |
Lewandowski M S, Overfelt R A. High temperature deformation behavior of solid and semi-solid alloy 718 [J]. Acta Mater., 1999, 47: 4695
|
94 |
Yu T, Wang D H, Wu W Y, et al. Radius dimension deviation and transfer law of fillet in investment casting superalloy [J]. Spec. Cast. Nonferrous Alloys, 2021, 41: 786
|
94 |
余 童, 汪东红, 吴文云 等. 熔模铸造高温合金圆角尺寸偏差与传递规律 [J]. 特种铸造及有色合金, 2021, 41: 786
|
95 |
Wang D H, Yu J P, Yang C L, et al. Dimensional control of ring-to-ring casting with a data-driven approach during investment casting [J]. Int. J. Adv. Manuf. Technol., 2022, 119: 691
|
96 |
Bi J Z, Qu W C, Wang H W, et al. Application and development of differential pressure casting [J]. Foundry Technol., 2000, (2): 16
|
96 |
毕鉴智, 曲万春, 王宏伟 等. 差压铸造的应用及发展 [J]. 铸造技术, 2000, (2): 16
|
97 |
Chandley G D. Use of vacuum for counter-gravity casting of metals [J]. Mater. Res. Innovat., 1999, 3: 14
|
98 |
Chandley D, Redemske J, Mikkola P, et al. Development of thin-wall stainless steel castings using countergravity process for automobile application [J]. Trans. Am. Foundrymen's Soc., 1996, 104: 903
|
99 |
Zeng J M. On the dynamic characteristics of mould-filling under countergravity [J]. J. Nanchang Inst. Aeronaut. Technol., 1995, (2): 6
|
99 |
曾建民. 反重力充型的动力学特性 [J]. 南昌航空工业学院学报, 1995, (2): 6
|
100 |
Zeng J M, Zhou Y H. Pressure-adjusting casting method [P]. Chin Pat, 88106919.1, 1989
|
100 |
曾建民, 周尧和. 一种调压铸造方法 [P]. 中国专利, 88106919.1, 1989)
|
101 |
Wang M, Zeng J M, Huang W D. Adjusted pressure casting technique for precision casting of large-scale complicated & thin-wall components [J]. Foundry Technol., 2004, 25: 352
|
101 |
王 猛, 曾建民, 黄卫东. 大型复杂薄壁铸件高品质高精度调压铸造技术 [J]. 铸造技术, 2004, 25: 352
|
102 |
Kubisch J G, Wilczynski P D. Vacuum countergravity casting apparatus and method [P]. US Pat, 5062467, 1991
|
103 |
Hebsur M G. Processing of IN- 718 lattice block castings [P]. US Pat, E-13140, 2002
|
104 |
Stefanescu D M, Grugel R N, Curreri P A. In situ resource utilization for processing of metal alloys on lunar and mars bases [A]. Proceedings of American Society of Civil Engineers Conference [C]. Albuquerque, NM, 1998: 266
|
105 |
Wang J G, Zhou Z B, Wang Y C, et al. Numerical simulation and analysis on casting process of TiAl alloy [J]. Foundry Technol., 2009, 30:1054
|
105 |
王建国, 周中波, 王一川 等. TiAl合金铸造工艺数值模拟及分析 [J]. 铸造技术, 2009, 30: 1054
|
106 |
Hong R Z, Zhou Y J, Yao W B. Effect of filling velocity on metallurgical quality of thin wall aluminium alloy casting in vacuum suction [J]. J. Mater. Eng., 2006, (suppl.1): 294
|
106 |
洪润洲, 周永江, 姚惟斌. 真空吸铸条件下充型速度对薄壁铝合金铸件内部质量的影响 [J]. 材料工程, 2006, (): 294
|
107 |
Dong X P, Huang N Y, Wu S S, et al. Rapid casting of metallic parts based on SLS plastic prototype [J]. Spec. Cast. Nonferrous Alloys, 2001, (suppl.1): 195
|
107 |
董选普, 黄乃瑜, 吴树森 等. 薄壁铝合金铸件真空差压铸造工艺的研究 [J]. 特种铸造及有色合金, 2001, (): 195
|
108 |
Luo H J, Jie W Q. Analysis on filling process in counter gravity casting [J]. Foundry Technol., 2017, 38: 2188
|
108 |
罗海军, 介万奇. 反重力铸造的充型过程研究 [J]. 铸造技术, 2017, 38: 2188
|
109 |
Sanitas A, Bedel M, El Mansori M. Experimental and numerical study of section restriction effects on filling behavior in low-pressure aluminum casting [J]. J. Mater. Process. Technol., 2018, 254: 124
|
110 |
Li Y, Liu J X, Zhang Q, et al. Casting defects and microstructure distribution characteristics of aluminum alloy cylinder head with complex structure [J]. Mater. Today Commun., 2021, 27: 102416
|
111 |
Yan L, Wang M, Shan Z F, et al. Research on filling capacity of adjusted pressure casting of magnesium alloys [J]. Foundry Technol., 2005, 26: 914
|
111 |
严 力, 王 猛, 单志发 等. 镁合金调压铸造充型能力的研究 [J]. 铸造技术, 2005, 26: 914
|
112 |
Zhou Z B, Li J S, Kou H C, et al. Effects of processing parameters on filling behavior of thin-walled casting in low pressure casting [J]. Spec. Cast. Nonferrous Alloys, 2008, 28: 23
|
112 |
周中波, 李金山, 寇宏超 等. 工艺参数对低压铸造薄壁件充型能力的影响 [J]. 特种铸造及有色合金, 2008, 28: 23
|
113 |
Dong X P, Huang N Y, Wu S S. Newly developed vacuum differential pressure casting of thin-walled complicated Al-alloy castings [J]. China Foundry, 2005, 2: 102
|
114 |
Wang Z L, Ma X F, Wu J, et al. Influence of gas in mold cavity on mold-filling capacity for thin-walled aluminum alloy castings [J]. Foundry, 2012, 61: 768
|
114 |
王振岭, 马晓锋, 吴 江 等. 型腔中气体对薄壁铝合金铸件充型能力的影响 [J]. 铸造, 2012, 61: 768
|
115 |
Jiang W M, Fan Z T, Liu D J, et al. Influence of process parameters on filling ability of A356 aluminium alloy in expendable pattern shell casting with vacuum and low pressure [J]. Int. J. Cast Met. Res., 2012, 25: 47
|
116 |
Deng P K, Yang Z Y, Han J M, et al. Study on effective stress control and properties of vacuum pressure regulating casting ZL205A [J]. Foundry, 2019, 68: 1368
|
116 |
邓攀科, 杨智勇, 韩建民 等. ZL205A真空调压铸造有效应力控制与性能研究 [J]. 铸造, 2019, 68: 1368
|
117 |
Dong A P, Zhang J, Wang J, et al. Precesion casting method for high temperature alloy complex thin-walled castings [P]. Chin Pat, 201210219184.1, 2012
|
117 |
董安平, 张 佼, 王俊 等. 高温合金复杂薄壁铸件精密铸造方法 [P]. 中国专利, 201210219184.1, 2012)
|
118 |
Dong A P, Sun B D, Du D F, et al. Material for preparing ceramic liquid lift pipe, ceramic liquid lift pipe and preparation method thereof [P]. Chin Pat, 202010173538.8, 2021
|
118 |
董安平, 孙宝德, 杜大帆 等. 用于制备陶瓷升液管的材料、陶瓷升液管及其制备方法 [P]. 中国专利, 202010173538.8, 2021)
|
119 |
Dong A P, Yan N S, Zhang J, et al. Integrated high-temperature alloy pressure regulating precision casting device [P]. Chin Pat, 201410186654.8, 2014
|
119 |
董安平, 闫乃舜, 张 佼 等. 一体式高温合金调压精密铸造装置 [P]. 中国专利, 201410186654.8, 2014)
|
120 |
Garnier M. Electromagnetic processing of liquid materials in Europe [J]. ISIJ Int., 1990, 30: 1
|
121 |
Zi B T, Liu W J, Yao K F, et al. Application of electromagnetic field in materials' solidification [J]. Tianjin Metall., 2002, (5): 5
|
121 |
訾炳涛, 刘文今, 姚可夫 等. 电磁场在材料凝固过程中的应用 [J]. 天津冶金, 2002, (5): 5
|
122 |
Eskin D G, Mi J W. Solidification Processing of Metallic Alloys Under External Fields [M]. Cham: Springer, 2018: 1
|
123 |
Mikelson A E, Karklin Y K. Control of crystallization processes by means of magnetic fields [J]. J. Cryst. Growth, 1981, 52: 524
|
124 |
Yasuda H, Ohnaka I, Yamamoto Y, et al. Alignment of BiMn crystal orientation in Bi-20 at%Mn alloys by laser melting under a magnetic field [J]. Mater. Trans., 2003, 44: 2550
|
125 |
Jie J C, Yue S P, Liu J, et al. Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field [J]. Acta Mater., 2021, 208: 116747
|
126 |
Gao X P, Li X T, Qie X W, et al. Effect of ultrasonic field on the structures and mechanical properties of horizontal continuous casting ingots of Al-1%Si alloy [J]. Acta Metall. Sin., 2007, 43: 17
|
126 |
高学鹏, 李新涛, 郄喜望 等. 超声场对Al-1%Si合金水平连铸坯显微组织及力学性能的影响 [J]. 金属学报, 2007, 43: 17
|
127 |
Li T J. Electromagnetic field controls the development trend of alloy solidification [A]. 2018 China Copper Processing Industry Annual Conference and China Copper Industry Huangshi Summit Forum Collection [C]. Huangshi: CNFA, 2018: 191
|
127 |
李廷举. 电磁场控制合金凝固的发展趋势 [A]. 2018年中国铜加工产业年度大会暨中国铜产业黄石高峰论坛文集 [C]. 黄石: 中国有色金属加工工业协会, 2018: 191
|
128 |
Wang Q, Liu T, Gao A, et al. A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient [J]. Scr. Mater., 2007, 56: 1087
|
129 |
Liu T, Wang Q, Gao A, et al. Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients [J]. Scr. Mater., 2007, 57: 992
|
130 |
Zhang C, Wang Q, Gao A, et al. Effect of high magnetic field on the growth behavior of primary Sb phase in Sb-4.8%Mn hypoeutectic alloy [J]. Acta Metall. Sin., 2008, 44: 713
|
130 |
张 超, 王 强, 高 翱 等. 强磁场对Sb-4.8%Mn合金初生相生长行为的影响 [J]. 金属学报, 2008, 44: 713
|
131 |
Wang Q, Dong M, Sun J M, et al. Control of solidification process and fabrication of functional materials with high magnetic fields [J]. Acta Metall. Sin., 2018, 54: 742
|
131 |
王 强, 董 蒙, 孙金妹 等. 强磁场下合金凝固过程控制及功能材料制备 [J]. 金属学报, 2018, 54: 742
|
132 |
Wang Z Y, Wang E G, Zhang X W, et al. Analysis of meniscus fluctuation in mold for round billets by if soft-contact electromagnetic continuous casting [J]. J. Northeastern Univ. (Nat. Sci.), 2009, 30: 1282
|
132 |
王朝阳, 王恩刚, 张兴武 等. 圆坯中频电磁软接触连铸结晶器内弯月面波动分析 [J]. 东北大学学报(自然科学版), 2009, 30: 1282
|
133 |
Wang H, Wang E G, Kang L, et al. Numerical simulation of molten steel fluid flow in slab continuous casting mold [J]. Ind. Heat., 2009, 38(3): 54
|
133 |
王 浩, 王恩刚, 康 丽 等. 板坯连铸结晶器内钢液流场的数值模拟 [J]. 工业加热, 2009, 38(3): 54
|
134 |
Chen Z H, Wang E G, Zhang X W, et al. Behavior of meniscus in slab caster mold under electromagnetic field [J]. Iron Steel, 2006, 41(12): 26
|
134 |
陈芝会, 王恩刚, 张兴武 等. 电磁场作用下板坯连铸结晶器内的弯月面行为 [J]. 钢铁, 2006, 41(12): 26
|
135 |
Liu C L, Su H J, Zhang J, et al. Research progress in effect of static magnetic field on microstructure of directionally solidified Ni-based superalloy [J]. J. Mater. Eng., 2019, 47(9): 13
|
135 |
刘承林, 苏海军, 张 军 等. 静磁场对定向凝固镍基高温合金组织影响的研究进展 [J]. 材料工程, 2019, 47(9): 13
|
136 |
Liu C L, Su H J, Zhang J, et al. Effect of electromagnetic field on microstructure of Ni-based single crystal superalloys [J]. Acta Metall. Sin., 2018, 54: 1428
|
136 |
刘承林, 苏海军, 张 军 等. 电磁场对镍基单晶高温合金组织的影响 [J]. 金属学报, 2018, 54: 1428
|
137 |
Zhao Y, Su H J, Zhang J, et al. Recent progress on directional solidification of nickel-based superalloys with magnetic field [J]. Mater. Mech. Eng., 2021, 45(5): 1
|
137 |
赵 勇, 苏海军, 张 军 等. 磁场作用下镍基高温合金定向凝固的研究进展 [J]. 机械工程材料, 2021, 45(5): 1
|
138 |
Ren Z M. Progress in research of solidification of metals under a strong magnetic field [J]. Mater. China, 2010, 29(6): 40
|
138 |
任忠鸣. 强磁场下金属凝固研究进展 [J]. 中国材料进展, 2010, 29(6): 40
|
139 |
Li X, Fautrelle Y, Ren Z M, et al. Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification [J]. Acta Mater., 2009, 57: 1689
|
140 |
Du D F, Hou L, Gagnoud A, et al. Effect of an axial high magnetic field on Sn dendrite morphology of Pb-Sn alloys during directional solidification [J]. J. Alloys Compd., 2014, 588: 190
|
141 |
Ren Z M, Lei Z S, Li C J, et al. New study and development on electromagnetic field technology in metallurgical processes [J]. Acta Metall. Sin., 2020, 56: 583
|
141 |
任忠鸣, 雷作胜, 李传军 等. 电磁冶金技术研究新进展 [J]. 金属学报, 2020, 56: 583
|
142 |
Liao X L, Zhai Q J, Luo J, et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum [J]. Acta Mater., 2007, 55: 3103
|
143 |
Zhong Y Y, Bai Y M, Li G, et al. Effect of pulse magnetic oscillation waveform on solidification structure of pure aluminum [J]. Shanghai Met., 2021, 43(4): 92
|
143 |
钟玉义, 白亚鸣, 李 刚 等. 脉冲磁致振荡波形对纯铝凝固组织的影响 [J]. 上海金属, 2021, 43(4): 92
|
144 |
Li L J, Wang Y, Zhai Q J. Application of solidification homogenizing technology of pulse magneto oscillation (PMO) in special steels [J]. J. Iron Steel Res., 2021, 33: 1018
|
144 |
李莉娟, 王 郢, 翟启杰. 脉冲磁致振荡(PMO)凝固均质化技术在特殊钢中的应用 [J]. 钢铁研究学报, 2021, 33: 1018
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|