|
|
激光增材制造高温合金材料与工艺研究进展 |
孙晓峰1, 宋巍1,2, 梁静静1( ), 李金国1( ), 周亦胄1 |
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2.中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing |
SUN Xiaofeng1, SONG Wei1,2, LIANG Jingjing1( ), LI Jinguo1( ), ZHOU Yizhou1 |
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
孙晓峰, 宋巍, 梁静静, 李金国, 周亦胄. 激光增材制造高温合金材料与工艺研究进展[J]. 金属学报, 2021, 57(11): 1471-1483.
Xiaofeng SUN,
Wei SONG,
Jingjing LIANG,
Jinguo LI,
Yizhou ZHOU.
Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing[J]. Acta Metall Sin, 2021, 57(11): 1471-1483.
1 |
Hu Z Q, Liu L R, Jin T, et al. Development of the Ni-base single crystal superalloys [J]. Aeroengine, 2005, 31(3): 1
|
1 |
胡壮麒, 刘丽荣, 金 涛等. 镍基单晶高温合金的发展 [J]. 航空发动机, 2005, 31(3): 1
|
2 |
Zhu Z, Basoalto H, Warnken N, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60: 4888
|
3 |
Das D K, Murphy K S, Ma S W, et al. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium [J]. Metall. Mater. Trans., 2008, 39A: 1647
|
4 |
Mughrabi H, Tetzlaff U. Microstructure and high-temperature strength of monocrystalline nickel-base superalloys [J]. Adv. Eng. Mater., 2000, 2: 319
|
5 |
Reed R C. The Superalloys Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
|
6 |
Furrer D, Fecht H. Ni-based superalloys for turbine discs [J]. JOM, 1999, 51(1): 14
|
7 |
Panwisawas C, Tang T Y, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
|
8 |
Thompson S M, Bian L K, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics [J]. Addit. Manuf., 2015, 8: 36
|
9 |
Melchels F P W, Domingos M A N, Klein T J, et al. Additive manufacturing of tissues and organs [J]. Prog. Polym. Sci., 2012, 37: 1079
|
10 |
Buchbinder D, Schleifenbaum H, Heidrich S, et al. High power selective laser melting (HP SLM) of aluminum parts [J]. Phys. Procedia, 2011, 12: 271
|
11 |
Huang S H, Liu P, Mokasdar A, et al. Additive manufacturing and its societal impact: A literature review [J]. Int. J. Adv. Manuf. Technol., 2013, 67: 1191
|
12 |
The FAA cleared the first 3D printed part to fly in a commercial jet engine from GE [EB/OL]. (2015-04-14).
|
13 |
SuperAdmin. Additive manufacturing & sustainability [EB/OL]. (2020-07-19).
|
14 |
Man diesel uses metal AM for serial turbine production [EB/OL]. (2017-04-25).
|
15 |
Cham J G, Bailey S A, Clark J E, et al. Fast and robust: Hexapedal robots via shape deposition manufacturing [J]. Int. J. Robot. Res., 2002, 21: 869
|
16 |
Wang D, Qian Z Y, Dou W H, et al. Research progress on selective laser melting of nickel based superalloy [J]. Addit. Manuf. Technol., 2018, 61(10): 49
|
16 |
王 迪, 钱泽宇, 窦文豪等. 激光选区熔化成形高温镍基合金研究进展 [J]. 增材制造技术, 2018, 61(10): 49
|
17 |
Additive manufacturing: Siemens uses innovative technology to produce gas turbines [EB/OL].
|
18 |
Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
|
19 |
Kellner T. Fit to print: New plant will assemble world's first passenger jet engine with 3D printed fuel nozzles, next-gen materials [EB/OL]. (2014-06-23).
|
20 |
Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
|
20 |
林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
|
21 |
Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronaut. Manuf. Technol., 2016, (12): 26
|
21 |
杨 强, 鲁中良, 黄福享等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
|
22 |
Ge J B, Zhang A F, Li D C, et al. Process research on DZ125L superalloy parts by laser metal direct forming [J]. Chin. J. Lasers, 2011, 38(7): 119
|
22 |
葛江波, 张安峰, 李涤尘等. 激光金属直接成形DZ125L高温合金零件工艺的研究 [J]. 中国激光, 2011, 38(7): 119
|
23 |
Man diesel uses metal am for serial turbine production [EB/OL].
|
24 |
im Durchbruch 3D-Druck / Breakthrough in 3D printing [EB/OL].
|
25 |
Messier D. MTI partners with NASA Johnson on 3D printed engine [EB/OL].
|
26 |
Rae Botsford End. SpaceX's SuperDraco engine: Abort capability all the way to orbit [EB/OL]. (2015-05-07)[2017-10-30].
|
27 |
Clemons R. Identify the best 3D-printing process for your application [EB/OL].
|
28 |
Wen S F, Li S, Wei Q S, et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts [J]. J. Mater. Process. Technol., 2014, 214: 2660
|
29 |
Liu R C, Yang Y Q, Wang D. Research of upper surface roughness of metal parts fabricated by selective laser melting [J]. Laser Technol., 2013, 37: 425
|
29 |
刘睿诚, 杨永强, 王 迪. 选区激光熔化成型金属零件上表面粗糙度的研究 [J]. 激光技术, 2013, 37: 425
|
30 |
Huang W D, Li Y M, Feng L P, et al. Laser solid forming of metal powder materials [J]. J. Mater. Eng., 2002, (3): 40
|
30 |
黄卫东, 李延民, 冯莉萍等. 金属材料激光立体成形技术 [J]. 材料工程, 2002, (3): 40
|
31 |
Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing-microstructure maps [J]. Acta Mater., 2001, 49: 1051
|
32 |
Ci S W, Liang J J, Li J G, et al. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming [J]. J. Mater. Sci. Technol., 2020, 45: 23
|
33 |
Kurz W, Fisher D J. Dendrite growth at the limit of stability: Tip radius and spacing [J]. Acta Mater., 1981, 29: 11
|
34 |
Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing [J]. Acta Mater., 2021, 202: 417
|
35 |
Li S, Wei Q S, Shi Y S, et al. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2015, 31: 946
|
36 |
Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
|
37 |
Wang K B, Liu Y X, Sun Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing [J]. J. Alloys Compd., 2020, 819: 152936
|
38 |
Carter L N, Attallah M M, Reed R C. Laser powder bed fabrication of nickel-base superalloys: Influence of parameters; characterization, quantification and mitigation of cracking [M]. John Wiley & Sons, Inc., 2012: 577
|
39 |
Perevoshchikova N, Rigaud J, Sha Y, et al. Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert’s design [J]. Rapid Prototyp. J., 2017, 23: 881
|
40 |
Zhang Y W, Zhang S Q, Wang H M. Microstructure and mechanical properties of directional rapidly solidified Ni-base superalloy Rene95 by laser melting deposition manufacturing [J]. Rare Met. Mater. Eng., 2008, 37: 169
|
40 |
张亚玮, 张述泉, 王华明. 激光熔化沉积定向快速凝固高温合金组织及性能 [J]. 稀有金属材料与工程, 2008, 37: 169
|
41 |
Liu L R, Jin T, Zhao N R, et al. Effect of carbon addition on the creep properties in a Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2004, A385: 105
|
42 |
Dye D, Hunziker O, Reed R C. Numerical analysis of the weldability of superalloys [J]. Acta Mater., 2001, 49: 683
|
43 |
Liang Y J, Li J, Li A, et al. Solidification path of single-crystal nickel-base superalloys with minor carbon additions under laser rapid directional solidification conditions [J]. Scr. Mater., 2017, 127: 58
|
44 |
Lippold J C. Welding Metallurgy and Weldability [M]. Hoboken: John Wiley & Sons, Inc., 2015: 1
|
45 |
Kou S. Solidification and liquation cracking issues in welding [J]. JOM, 2003, 55(6): 37
|
46 |
Zhang X Q, Chen H B, Xu L M, et al. Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy [J]. Mater. Des., 2019, 183: 108105
|
47 |
Ploshikhin V, Prikhodovsky A, Makhutin M, et al. Mechanical-metallurgical approach to modeling of solidification cracking in welds [A]. Hot Cracking Phenomena in Welds [M]. Berlin, Heidelberg: Springer, 2005: 223
|
48 |
Wang H M, Zhang J H, Tang Y J, et al. Rapidly solidified MC carbide morphologies of a laser-glazed single-crystal nickel-base superalloy [J]. Mater. Sci. Eng., 1992, A156: 109
|
49 |
Nastac L, Stefanescu D M. Computational modeling of NbC/Laves formation in INCONEL 718 equiaxed castings [J]. Metall. Mater. Trans., 1997, 28A: 1582
|
50 |
Egbewande A T, Zhang H R, Sidhu R K, et al. Improvement in laser weldability of INCONEL 738 superalloy through microstructural modification [J]. Metall. Mater. Trans., 2009, 40A: 2694
|
51 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
|
52 |
Collins M G, Lippold J C. An investigation of ductility dip cracking in nickel-based filler materials-part I [J]. Weld J., 2003, 82: 288s
|
53 |
Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal: part II-Insight into the mechanism for ductility dip cracking [J]. Mater. Sci. Eng., 2004, A380: 245
|
54 |
Tian Y, Tomus D, Rometsch P, et al. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting [J]. Addit. Manuf., 2017, 13: 103
|
55 |
Moussaoui K, Rubio W, Mousseigne M, et al. Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2018, A735: 182
|
56 |
Olakanmi E O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties [J]. J. Mater. Process. Technol., 2013, 213: 1387
|
57 |
Bazaz B, Zarei-Hanzaki A, Fatemi-Varzaneh S M. Hardness and microstructure homogeneity of pure copper processed by accumulative back extrusion [J]. Mater. Sci. Eng., 2013, A559: 595
|
58 |
Liu Z Y, Li C, Fang X Y, et al. Energy consumption in additive manufacturing of metal parts [J]. Procedia Manuf., 2018, 26: 834
|
59 |
Choi J P, Shin G H, Yang S S, et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting [J]. Powder Technol., 2017, 310: 60
|
60 |
Cloots M, Uggowitzer P J, Wegener K, et al. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles [J]. Mater. Des., 2016, 89: 770
|
61 |
Basak A, Das S. Additive manufacturing of nickel-base superalloy René N5 through scanning laser epitaxy (SLE)—Material processing, microstructures, and microhardness properties [J]. Adv. Eng. Mater., 2017, 19: 1600690
|
62 |
Tang M, Pistorius P C, Beuth J L. Prediction of lack-of-fusion porosity for powder bed fusion [J]. Addit. Manuf., 2017, 14: 39
|
63 |
Bajaj P, Wright J, Todd I, et al. Predictive process parameter selection for Selective Laser Melting Manufacturing: Applications to high thermal conductivity alloys [J]. Addit. Manuf., 2019, 27: 246
|
64 |
Chen R Z. Development status of single crystal superalloys [J]. J. Mater. Eng., 1995, (8): 3
|
64 |
陈荣章. 单晶高温合金发展现状 [J]. 材料工程, 1995, (8): 3
|
65 |
Yang J J, Li F Z, Wang Z M, et al. Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication [J]. J. Mater. Process. Technol., 2015, 225: 229
|
66 |
Song H Y, Lei J B, Xie J C, et al. Laser melting deposition of K403 superalloy: The influence of processing parameters on the microstructure and wear performance [J]. J. Alloys Compd., 2019, 805: 551
|
67 |
Wang N, Mokadem S, Rappaz M, et al. Solidification cracking of superalloy single- and bi-crystals [J]. Acta Mater., 2004, 52: 3173
|
68 |
Ojo O A, Richards N L, Chaturvedi M C. Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy [J]. Scr. Mater., 2004, 51: 683
|
69 |
Liu Z Y, Zhao D D, Wang P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100: 224
|
70 |
Donachie M J, Donachie S J. Superalloys: A Technical Guide [M]. 2nd Ed., Materials Park: ASM International, 2002: 1
|
71 |
Vitek J M, Babu S S, David S A, et al. Cracking behavior in nickel-based single crystal superalloy welds [A]. Proceedings of the 7th International conference on Trends in Welding Research [C]. Pine Mountain, May16-20, 2005: 16
|
72 |
Zhou Z P, Huang L, Shang Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing [J]. Mater. Des., 2018, 160: 1238
|
73 |
Kozeschnik E, Rindler W, Buchmayr B. Scheil-Gulliver simulation with partial redistribution of fast diffusers and simultaneous solid-solid phase transformations [J]. Int. J. Mater. Res., 2007, 98: 826
|
74 |
Kou S. A criterion for cracking during solidification [J]. Acta Mater., 2015, 88: 366
|
75 |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci, 2018, 92: 112
|
76 |
Harrison N J, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach [J]. Acta Mater., 2015, 94: 59
|
77 |
Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
|
78 |
Tang L, Liang J J, Cui C Y, et al. Influence of Co content on the microstructures and mechanical properties of a Ni-Co base superalloy made by specific additive manufacturing process [J]. Mater. Sci. Eng., 2020, A786: 139438
|
79 |
Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
|
80 |
Han Q Q, Gu Y C, Soe S, et al. Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing [J]. Opt. Laser Technol., 2020, 124: 105984
|
81 |
Murray S P, Pusch K M, Polonsky A T, et al. A defect-resistant Co-Ni superalloy for 3D printing [J]. Nat. Commun., 2020, 11: 4975
|
82 |
Thomas M, Baxter G J, Todd I. Normalised model-based processing diagrams for additive layer manufacture of engineering alloys [J]. Acta Mater., 2016, 108: 26
|
83 |
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
|
84 |
Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
|
85 |
Guo J T, Hou J S, Zhou L Z, et al. Prediction and improvement of mechanical properties of corrosion resistant superalloy K44 with adjusting minor additions C, B and Hf [J]. Mater. Trans., 2006, 47: 198
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|