Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 1036-1046    DOI: 10.11900/0412.1961.2019.00401
  本期目录 | 过刊浏览 |
合金化元素对W-Cu体系多类界面特征影响的第一性原理计算
盖逸冰, 唐法威, 侯超, 吕皓, 宋晓艳()
北京工业大学材料科学与工程学院新型功能材料教育部重点实验室 北京 100124
First-Principles Calculation on the Influence of Alloying Elements on Interfacial Features of W-Cu System
GAI Yibing, TANG Fawei, HOU Chao, LU Hao, SONG Xiaoyan()
Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
引用本文:

盖逸冰, 唐法威, 侯超, 吕皓, 宋晓艳. 合金化元素对W-Cu体系多类界面特征影响的第一性原理计算[J]. 金属学报, 2020, 56(7): 1036-1046.
Yibing GAI, Fawei TANG, Chao HOU, Hao LU, Xiaoyan SONG. First-Principles Calculation on the Influence of Alloying Elements on Interfacial Features of W-Cu System[J]. Acta Metall Sin, 2020, 56(7): 1036-1046.

全文: PDF(2492 KB)   HTML
摘要: 

基于第一性原理界面模型对W-Cu复合材料体系中W/Cu相界、W晶界和Cu晶界的溶质偏聚行为进行了系列计算分析,定量化研究了W-Cu体系中多类界面的键合特征和Sc、Ti、Y、In等多种合金化元素的界面偏聚特点。结合W-Cu体系的偏聚能和电子结构计算,揭示了W-Cu体系中同种合金化元素在晶界偏聚和相界偏聚过程中可能存在的显著差异及其微观机理。通过W-Y和W-Sc体系中合金化元素添加结果的对比分析,阐述了强偏聚元素与界面稳定性之间的关联。进一步,结合晶界偏聚能、相界偏聚能、铜基固溶体形成能等计算,提出了W-Cu复合材料体系筛选溶质元素的基本判据,从原子尺度上为研究多相复合体系的合金化元素优选策略提供了普适性分析方法,同时为高性能W-Cu基复合材料的研发提供了新的设计思路。

关键词 第一性原理W-Cu复合材料溶质偏聚界面特征    
Abstract

The W-Cu alloy has been widely applied in metallurgy, electronics, military and other fields because of its good arc-resistance, anti-welding, heat and electricity conducting etc. In the recent years, attention to the immiscible W-Cu alloy has been shifted to the problem of stabilizing the W/Cu interface by alloying. However, there are still research lacks of the mechanisms of diffusion, segregation of alloying elements in this alloy. It, obviously, will limit the further optimizing design for the W-Cu alloy. This work is focused on the first-principle study of the electronic structure of W/Cu interfaces. Calculations showed that the same alloying elements in W-Cu system may have significant differences in grain boundary segregation and interface segregation behavior, and related micromechanism was revealed. It was demonstrated that the relationship of the segregation energies of Sc, Ti, Y and In into W/Cu interfaces and grain boundaries of pure W and Cu were related to their stability. The correlation between segregation energy and interface stability was also disclosed by the first-principle interface calculation for W-Sc and W-Y systems. Further, combined with the solute segregation calculations for the W/Cu interfaces, W grain boundaries, Cu grain boundaries and the formation energy for the Cu solid solution, the criterion for solute optimizing selection for the W-Cu system was proposed. According to which, Y was selected as the candidate alloying element to stabilize the W/Cu interface. This work proposed a more universal method for the optimal alloying element selection and may provide a new design method for the development of high-performance W-Cu alloy.

Key wordsfirst-principle    W-Cu composite material    solute segregation    interfacial characteristic
收稿日期: 2019-11-25     
ZTFLH:  TG131  
基金资助:国家重点研发计划项目(2018YFB0703902);国家自然科学基金重点项目(51631002);国家杰出青年科学基金项目(51425101)
作者简介: 盖逸冰,女,1995生,硕士
图1  W-Cu体系晶界和相界偏聚模型示意图
Bond typeMulliken populationBond length / nm
Cu—W0.250.256
Cu—Cu0.10~0.700.256~0.266
W—W0.90~1.800.266~0.300
表1  W(111)/Cu(111)相界模型中各类价键对应的Mulliken布居值和键长
图2  W(111)/Cu(111)相界模型中W原子和Cu原子的局域态密度图、局部电荷密度分布和局部差分电荷密度分布
图3  W/Cu相界面处溶质元素在W侧和Cu侧的偏聚行为
图4  不同种类元素在W、Cu晶界面3类位点下的偏聚能
图5  In元素在Cu的晶界面偏聚后、W/Cu相界面中W侧偏聚后、W/Cu相界面中Cu侧偏聚后的局部电荷密度图和差分电荷密度图
图6  Sc和Y元素在W晶界偏聚前后的模型示意图和布居值分析图
图7  图6中Sc和Y偏聚前后各原子间的局域态密度
图8  W晶界中Sc元素在偏聚前后晶界区域的局部电荷密度及局部差分电荷密度分布
ElementEW/Cu / eVEW / eVECu / eVEform / eV
Sc-0.68-0.84-1.15-0.26
Ti-0.370.09-0.670.21
Y-0.82-2.17-1.790.89
In-0.82-1.46-0.800.53
表2  W-Cu体系中合金化元素性质
[1] Elsayed A, Li W, El Kady O A, et al. Experimental investigations on the synthesis of W-Cu nanocomposite through spark plasma sintering [J]. J. Alloys Compd., 2015, 639: 373
[2] Liang S H, Chen L, Yuan Z X, et al. Infiltrated W-Cu composites with combined architecture of hierarchical particulate tungsten and tungsten fibers [J]. Mater. Charact., 2015, 110: 33
[3] Wei X X, Tang J C, Ye N, et al. A novel preparation method for W-Cu composite powders [J]. J. Alloys Compd., 2016, 661: 471
doi: 10.1016/j.jallcom.2015.11.158
[4] Zhou Q, Chen P W. Fabrication of W-Cu composite by shock consolidation of Cu-coated W powders [J]. J. Alloys Compd., 2016, 657: 215
[5] Calvo M, Jakus A E, Shah R N, et al. Microstructure and processing of 3D printed tungsten microlattices and infiltrated W-Cu composites [J]. Adv. Eng. Mater., 2018, 20: 1800354
[6] Chen W G, Dong L L, Zhang H, et al. Microstructure characterization of W-Cu alloy sheets produced by high temperature and high pressure deformation technique [J]. Mater. Lett., 2017, 205: 198
[7] Li L Y, Li J S, He Y X, et al. Tensile properties and deformation micromechanism of Ti-based metallic glass composite containing impurity elements [J]. J. Alloys Compd., 2019, 784: 220
[8] Li L L, Saber M, Xu W Z, et al. High-temperature grain size stabilization of nanocrystalline Fe-Cr alloys with Hf additions [J]. Mater. Sci. Eng., 2014, A613: 289
[9] Chen P G, Shen Q, Luo G Q, et al. The mechanical properties of W-Cu composite by activated sintering [J]. Int. J. Refract. Met. Hard Mater., 2013, 36: 220
[10] Chen P G, Luo G Q, Shen Q, et al. Thermal and electrical properties of W-Cu composite produced by activated sintering [J]. Mater. Des., 2013, 46: 101
[11] Li Y, Zhang J, Luo G Q, et al. Densification and properties investigation of W-Cu composites prepared by electroless-plating and activated sintering [J]. Int. J. Refract. Met. Hard Mater., 2018, 71: 255
[12] Borji S, Ahangarkani M, Zangeneh-Madar K, et al. The effect of sintering activator on the erosion behavior of infiltrated W-10wt% Cu composite [J]. Int. J. Refract. Met. Hard Mater., 2017, 66: 150
[13] Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
pmid: 22923577
[14] Kawazoe Y. How well can physical, chemical, and mechanical properties of materials be predicted by ab initio techniques? [J]. Mater. Des., 2001, 22: 61
[15] Braithwaite J S, Rez P. Grain boundary impurities in iron [J]. Acta Mater., 2005, 53: 2715
[16] Yamaguchi M, Kaburaki H, Shiga M. Energetics of segregation and embrittling potency for non-transition elements in the Ni Σ5(012) symmetrical tilt grain boundary: A first-principles study [J]. J. Phys.: Condens. Mater., 2004, 16: 3933
[17] Liang C P, Fan J L, Gong H R. Cohesion strength and atomic structure of W-Cu graded interfaces [J]. Fusion Eng. Des., 2017, 117: 20
[18] Terakura K, Oguchi T, Mohri T, et al. Electronic theory of the alloy phase stability of Cu-Ag, Cu-Au, and Ag-Au systems [J]. Phys. Rev., 1987, 35B: 2169
[19] Jiang D Y. First-principles study on mechanical properties of tungsten alloys for plasma facing materials [D]. Nanchang: Nanchang University, 2017
[19] (姜迪友. 面向等离子体材料钨合金力学性质的第一性原理研究 [D]. 南昌: 南昌大学, 2017)
[20] Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
[21] Zhou H B, Jin S, Zhang Y, et al. Effects of hydrogen on a tungsten grain boundary: A first-principles computational tensile test [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 240
[22] Ahangarkani M, Borji S, Zangeneh-Madar K, et al. Mutual relationship between material removal rate and W-W interfacial features during ultra-high temperature erosion of infiltrated W-10wt.% Cu composite [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 191
[23] Tang F W, Liu X M, Wang H B, et al. Solute segregation and thermal stability of nanocrystalline solid solution systems [J]. Nanoscale, 2019, 11: 1813
pmid: 30631871
[24] Chookajorn T, Schuh C A. Nanoscale segregation behavior and high-temperature stability of nanocrystalline W-20 at.% Ti [J]. Acta Mater., 2014, 73: 128
[25] Chookajorn T, Park M, Schuh C A. Duplex nanocrystalline alloys: entropic nanostructure stabilization and a case study on W-Cr [J]. J. Mater. Res., 2015, 30: 151
[26] Wang Q, Tang F W, Hou C, et al. First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries [J]. Acta Phys. Sin., 2019, 68: 077101
[26] (王 奇, 唐法威, 侯 超等. W-In体系溶质晶界偏聚行为的第一性原理计算 [J]. 物理学报, 2019, 68: 077101)
[27] Zhu Y D, Yan M F, Zhang Y X, et al. First-principles investigation of structural, mechanical and electronic properties for Cu-Ti intermetallics [J]. Comput. Mater. Sci., 2016, 123: 70
[28] Scheiber D, Pippan R, Puschnig P, et al. Ab initio search for cohesion-enhancing solute elements at grain boundaries in molybdenum and tungsten [J]. Modell. Simul. Mater. Sci., 2016, 24: 085009
[29] Scheiber D, Pippan R, Puschnig P, et al. Ab-initio search for cohesion-enhancing solute elements at grain boundaries in molybdenum and tungsten [J]. Int. J. Refract. Met. Hard Mater., 2016, 60: 75
[30] Seyring M, Song X Y, Rettenmayr M. Advance in orientation microscopy: Quantitative analysis of nanocrystalline structures [J]. ACS Nano, 2011, 5: 2580
pmid: 21375327
[31] Tang F W, Song X Y, Hou C, et al. Modeling of Li diffusion in nanocrystalline Li-Si anode material [J]. Phys. Chem. Chem. Phys., 2018, 20: 7132
pmid: 29479582
[32] Kronberg M L, Wilson F H. Secondary recrystallization in copper [J]. JOM, 1949, 1(8): 501
[33] He W H, Gao X, Pang L L, et al. First-principles investigation of vacancies in LiTaO3 [J]. J. Phys.: Condens. Mater., 2016, 28: 315501
doi: 10.1088/0953-8984/28/31/315501
[34] Wang X M, Qin X G. The influence of 5 tilt grain boundaries of copper nanoparticles on sintering behavior [J]. Chin. J. Stereol. Image Anal., 2016, 21: 279
[34] (王晓勉, 秦湘阁. 5晶界对铜纳米颗粒烧结行为的影响 [J]. 中国体视学与图像分析, 2016, 21: 279)
[35] Yang G Y, Liu Y, Hang Z Q, et al. Adhesion at cerium doped metal-ceramic α-Fe/WC interface: A first-principles calculation [J]. J. Rare Earth., 2019, 37: 773
doi: 10.1016/j.jre.2018.11.009
[36] Jaouen M, Pacaud J, Jaouen C. Elastic strains and enhanced stress relaxation effects induced by ion irradiation in W(110)/Cu(111) multilayers: Comparative EXAFS and X-ray diffraction studies [J]. Phys. Rev., 2001, 64B: 144106
[37] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. J. Phys.: Condens. Mater., 2002, 14: 2717
doi: 10.1088/0953-8984/14/11/301
[38] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev., 1990, 41B: 7892
[39] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
[40] Li Z W, Kong X S, Liu C S, et al. Segregation of alloying atoms at a tilt symmetric grain boundary in tungsten and their strengthening and embrittling effects [J]. Chin. Phys., 2014, 23B: 106107
[41] Scheiber D, Razumovskiy V I, Puschnig P, et al. Ab initio description of segregation and cohesion of grain boundaries in W-25 at.% Re alloys [J]. Acta Mater., 2015, 88: 180
doi: 10.1016/j.actamat.2014.12.053
[42] Wolverton C, Ozoliņš V, Asta M. Hydrogen in aluminum: First-principles calculations of structure and thermodynamics [J]. Phys. Rev., 2004, 69B: 144109
[1] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[2] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[3] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
[4] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[5] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[6] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.
[7] 崔洋, 李寿航, 应韬, 鲍华, 曾小勤. 基于第一性原理的金属导热性能研究[J]. 金属学报, 2021, 57(3): 375-384.
[8] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
[9] 高翔, 张桂凯, 向鑫, 罗丽珠, 汪小琳. 合金元素对V(110)表面O吸附影响的第一性原理研究[J]. 金属学报, 2020, 56(6): 919-928.
[10] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[11] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[12] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[13] 周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
[14] 王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
[15] 崔荣华, 王歆钰, 董正超, 仲崇贵. Mg1-xZnx合金的弹性和热力学性质的第一性原理研究[J]. 金属学报, 2017, 53(9): 1133-1139.