|
|
合金化元素对W-Cu体系多类界面特征影响的第一性原理计算 |
盖逸冰, 唐法威, 侯超, 吕皓, 宋晓艳( ) |
北京工业大学材料科学与工程学院新型功能材料教育部重点实验室 北京 100124 |
|
First-Principles Calculation on the Influence of Alloying Elements on Interfacial Features of W-Cu System |
GAI Yibing, TANG Fawei, HOU Chao, LU Hao, SONG Xiaoyan( ) |
Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China |
引用本文:
盖逸冰, 唐法威, 侯超, 吕皓, 宋晓艳. 合金化元素对W-Cu体系多类界面特征影响的第一性原理计算[J]. 金属学报, 2020, 56(7): 1036-1046.
Yibing GAI,
Fawei TANG,
Chao HOU,
Hao LU,
Xiaoyan SONG.
First-Principles Calculation on the Influence of Alloying Elements on Interfacial Features of W-Cu System[J]. Acta Metall Sin, 2020, 56(7): 1036-1046.
[1] |
Elsayed A, Li W, El Kady O A, et al. Experimental investigations on the synthesis of W-Cu nanocomposite through spark plasma sintering [J]. J. Alloys Compd., 2015, 639: 373
|
[2] |
Liang S H, Chen L, Yuan Z X, et al. Infiltrated W-Cu composites with combined architecture of hierarchical particulate tungsten and tungsten fibers [J]. Mater. Charact., 2015, 110: 33
|
[3] |
Wei X X, Tang J C, Ye N, et al. A novel preparation method for W-Cu composite powders [J]. J. Alloys Compd., 2016, 661: 471
doi: 10.1016/j.jallcom.2015.11.158
|
[4] |
Zhou Q, Chen P W. Fabrication of W-Cu composite by shock consolidation of Cu-coated W powders [J]. J. Alloys Compd., 2016, 657: 215
|
[5] |
Calvo M, Jakus A E, Shah R N, et al. Microstructure and processing of 3D printed tungsten microlattices and infiltrated W-Cu composites [J]. Adv. Eng. Mater., 2018, 20: 1800354
|
[6] |
Chen W G, Dong L L, Zhang H, et al. Microstructure characterization of W-Cu alloy sheets produced by high temperature and high pressure deformation technique [J]. Mater. Lett., 2017, 205: 198
|
[7] |
Li L Y, Li J S, He Y X, et al. Tensile properties and deformation micromechanism of Ti-based metallic glass composite containing impurity elements [J]. J. Alloys Compd., 2019, 784: 220
|
[8] |
Li L L, Saber M, Xu W Z, et al. High-temperature grain size stabilization of nanocrystalline Fe-Cr alloys with Hf additions [J]. Mater. Sci. Eng., 2014, A613: 289
|
[9] |
Chen P G, Shen Q, Luo G Q, et al. The mechanical properties of W-Cu composite by activated sintering [J]. Int. J. Refract. Met. Hard Mater., 2013, 36: 220
|
[10] |
Chen P G, Luo G Q, Shen Q, et al. Thermal and electrical properties of W-Cu composite produced by activated sintering [J]. Mater. Des., 2013, 46: 101
|
[11] |
Li Y, Zhang J, Luo G Q, et al. Densification and properties investigation of W-Cu composites prepared by electroless-plating and activated sintering [J]. Int. J. Refract. Met. Hard Mater., 2018, 71: 255
|
[12] |
Borji S, Ahangarkani M, Zangeneh-Madar K, et al. The effect of sintering activator on the erosion behavior of infiltrated W-10wt% Cu composite [J]. Int. J. Refract. Met. Hard Mater., 2017, 66: 150
|
[13] |
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
pmid: 22923577
|
[14] |
Kawazoe Y. How well can physical, chemical, and mechanical properties of materials be predicted by ab initio techniques? [J]. Mater. Des., 2001, 22: 61
|
[15] |
Braithwaite J S, Rez P. Grain boundary impurities in iron [J]. Acta Mater., 2005, 53: 2715
|
[16] |
Yamaguchi M, Kaburaki H, Shiga M. Energetics of segregation and embrittling potency for non-transition elements in the Ni Σ5(012) symmetrical tilt grain boundary: A first-principles study [J]. J. Phys.: Condens. Mater., 2004, 16: 3933
|
[17] |
Liang C P, Fan J L, Gong H R. Cohesion strength and atomic structure of W-Cu graded interfaces [J]. Fusion Eng. Des., 2017, 117: 20
|
[18] |
Terakura K, Oguchi T, Mohri T, et al. Electronic theory of the alloy phase stability of Cu-Ag, Cu-Au, and Ag-Au systems [J]. Phys. Rev., 1987, 35B: 2169
|
[19] |
Jiang D Y. First-principles study on mechanical properties of tungsten alloys for plasma facing materials [D]. Nanchang: Nanchang University, 2017
|
[19] |
(姜迪友. 面向等离子体材料钨合金力学性质的第一性原理研究 [D]. 南昌: 南昌大学, 2017)
|
[20] |
Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
|
[21] |
Zhou H B, Jin S, Zhang Y, et al. Effects of hydrogen on a tungsten grain boundary: A first-principles computational tensile test [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 240
|
[22] |
Ahangarkani M, Borji S, Zangeneh-Madar K, et al. Mutual relationship between material removal rate and W-W interfacial features during ultra-high temperature erosion of infiltrated W-10wt.% Cu composite [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 191
|
[23] |
Tang F W, Liu X M, Wang H B, et al. Solute segregation and thermal stability of nanocrystalline solid solution systems [J]. Nanoscale, 2019, 11: 1813
pmid: 30631871
|
[24] |
Chookajorn T, Schuh C A. Nanoscale segregation behavior and high-temperature stability of nanocrystalline W-20 at.% Ti [J]. Acta Mater., 2014, 73: 128
|
[25] |
Chookajorn T, Park M, Schuh C A. Duplex nanocrystalline alloys: entropic nanostructure stabilization and a case study on W-Cr [J]. J. Mater. Res., 2015, 30: 151
|
[26] |
Wang Q, Tang F W, Hou C, et al. First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries [J]. Acta Phys. Sin., 2019, 68: 077101
|
[26] |
(王 奇, 唐法威, 侯 超等. W-In体系溶质晶界偏聚行为的第一性原理计算 [J]. 物理学报, 2019, 68: 077101)
|
[27] |
Zhu Y D, Yan M F, Zhang Y X, et al. First-principles investigation of structural, mechanical and electronic properties for Cu-Ti intermetallics [J]. Comput. Mater. Sci., 2016, 123: 70
|
[28] |
Scheiber D, Pippan R, Puschnig P, et al. Ab initio search for cohesion-enhancing solute elements at grain boundaries in molybdenum and tungsten [J]. Modell. Simul. Mater. Sci., 2016, 24: 085009
|
[29] |
Scheiber D, Pippan R, Puschnig P, et al. Ab-initio search for cohesion-enhancing solute elements at grain boundaries in molybdenum and tungsten [J]. Int. J. Refract. Met. Hard Mater., 2016, 60: 75
|
[30] |
Seyring M, Song X Y, Rettenmayr M. Advance in orientation microscopy: Quantitative analysis of nanocrystalline structures [J]. ACS Nano, 2011, 5: 2580
pmid: 21375327
|
[31] |
Tang F W, Song X Y, Hou C, et al. Modeling of Li diffusion in nanocrystalline Li-Si anode material [J]. Phys. Chem. Chem. Phys., 2018, 20: 7132
pmid: 29479582
|
[32] |
Kronberg M L, Wilson F H. Secondary recrystallization in copper [J]. JOM, 1949, 1(8): 501
|
[33] |
He W H, Gao X, Pang L L, et al. First-principles investigation of vacancies in LiTaO3 [J]. J. Phys.: Condens. Mater., 2016, 28: 315501
doi: 10.1088/0953-8984/28/31/315501
|
[34] |
Wang X M, Qin X G. The influence of 5 tilt grain boundaries of copper nanoparticles on sintering behavior [J]. Chin. J. Stereol. Image Anal., 2016, 21: 279
|
[34] |
(王晓勉, 秦湘阁. 5晶界对铜纳米颗粒烧结行为的影响 [J]. 中国体视学与图像分析, 2016, 21: 279)
|
[35] |
Yang G Y, Liu Y, Hang Z Q, et al. Adhesion at cerium doped metal-ceramic α-Fe/WC interface: A first-principles calculation [J]. J. Rare Earth., 2019, 37: 773
doi: 10.1016/j.jre.2018.11.009
|
[36] |
Jaouen M, Pacaud J, Jaouen C. Elastic strains and enhanced stress relaxation effects induced by ion irradiation in W(110)/Cu(111) multilayers: Comparative EXAFS and X-ray diffraction studies [J]. Phys. Rev., 2001, 64B: 144106
|
[37] |
Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. J. Phys.: Condens. Mater., 2002, 14: 2717
doi: 10.1088/0953-8984/14/11/301
|
[38] |
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev., 1990, 41B: 7892
|
[39] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
[40] |
Li Z W, Kong X S, Liu C S, et al. Segregation of alloying atoms at a tilt symmetric grain boundary in tungsten and their strengthening and embrittling effects [J]. Chin. Phys., 2014, 23B: 106107
|
[41] |
Scheiber D, Razumovskiy V I, Puschnig P, et al. Ab initio description of segregation and cohesion of grain boundaries in W-25 at.% Re alloys [J]. Acta Mater., 2015, 88: 180
doi: 10.1016/j.actamat.2014.12.053
|
[42] |
Wolverton C, Ozoliņš V, Asta M. Hydrogen in aluminum: First-principles calculations of structure and thermodynamics [J]. Phys. Rev., 2004, 69B: 144109
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|