Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 919-928    DOI: 10.11900/0412.1961.2019.00411
  本期目录 | 过刊浏览 |
合金元素对V(110)表面O吸附影响的第一性原理研究
高翔1, 张桂凯2, 向鑫2, 罗丽珠1, 汪小琳3()
1.表面物理与化学重点实验室 江油 621908
2.中国工程物理研究院材料研究所 江油 621907
3.中国工程物理研究院 绵阳 621900
Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study
GAO Xiang1, ZHANG Guikai2, XIANG Xin2, LUO Lizhu1, WANG Xiaolin3()
1.Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China
2.Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
3.China Academy of Engineering Physics, Mianyang 621900, China
全文: PDF(3084 KB)   HTML
摘要: 

采用第一性原理方法研究了V(110)表面的氧吸附行为以及Al、Ti、Cr等合金元素的影响,并结合热力学原理构建了钒合金表面氧化相图,分析了钒合金表面氧化的微观机制。结果表明,Al和Ti倾向于在V(110)表面偏析,Cr不会在V(110)表面偏析。在V(110)表面会发生Al和Ti的选择性氧化,而Cr不会发生选择性氧化。对钒合金表面氧化机制的研究结果可以很好地解释钒合金的氧化行为,并可预测V-Al合金的选择性氧化行为,从而为钒合金表面氧化物阻氚涂层的制备提供指导。

关键词 第一性原理V(110)表面氧吸附表面氧化相图氧化物阻氚涂层    
Abstract

The oxygen adsorption behavior of V(110) surfaces and the alloying effects of Al, Ti, Cr are calculated using first-principles method. Then the surface phase diagrams for oxygen adsorption on binary V alloy surfaces are constructed combining with thermodynamics formalism. The microscopic mechanisms for oxidation of V alloy surfaces are analyzed. The calculated results of surface energies indicate that Al and Ti are preferable to be segregated on V(110) surfaces, while Cr is not. The oxygen adsorption behavior indicates that Al and Ti are favored to be oxidized on V(110) surfaces, while Cr is not. In this work, the microscopic oxidation mechanisms of V alloy surfaces have been successfully used to explain the experimental results of oxidation behavior. Moreover, the selective oxidation behavior of V-Al alloys has been predicted, and it would provide guidance for the fabrication of oxide tritium permeation barrier.

Key wordsfirst-principles    V(110) surface    oxygen adsorption    surface phase diagram    oxide tritium permeation barrier
收稿日期: 2019-12-02     
ZTFLH:  TG17  
基金资助:国家自然科学基金项目(11975213);国家磁约束核聚变能发展研究专项项目(2017YFE0300304);国家磁约束核聚变能发展研究专项项目(2018YFE0313100)
通讯作者: 汪小琳     E-mail: xlwang@caep.cn
Corresponding author: WANG Xiaolin     E-mail: xlwang@caep.cn
作者简介: 高 翔,男,1985年生,工程师,博士生

引用本文:

高翔, 张桂凯, 向鑫, 罗丽珠, 汪小琳. 合金元素对V(110)表面O吸附影响的第一性原理研究[J]. 金属学报, 2020, 56(6): 919-928.
Xiang GAO, Guikai ZHANG, Xin XIANG, Lizhu LUO, Xiaolin WANG. Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study. Acta Metall Sin, 2020, 56(6): 919-928.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00411      或      https://www.ams.org.cn/CN/Y2020/V56/I6/919

图1  O原子在V(110)表面吸附位置的示意图
图2  O原子在V(110)表面不同位置吸附的结合能
图3  覆盖度为0.25和1 ML时O在V(110)面3f吸附位的差分电荷密度图
图4  0.25和1 ML覆盖度下O吸附在3f位时O和表层V原子的分波态密度
图5  清洁合金化表面的表面能随合金元素化学势的变化图
图6  O在合金化V(110)-X表面的结合能
图7  覆盖度为0.25 ML时,O吸附在V(110)-X表面的差分电荷密度图
图8  覆盖度为0.25 ML时O吸附在V(110)-X表面的分波态密度
图9  O/V(110)-Al、O/V(110)-Ti、O/V(110)-Cr的相对表面能及相对表面能相图
[1] Muroga T, Chen J M, Chernov V M, et al. Present status of vanadium alloys for fusion applications [J]. J. Nucl. Mater., 2014, 455: 263
doi: 10.1016/j.jnucmat.2014.06.025
[2] Dolan M D, Kellam M E, McLennan K G, et al. Hydrogen transport properties of several vanadium-based binary alloys [J]. Int. J. Hydrogen Energy, 2013, 38: 9794
doi: 10.1016/j.ijhydene.2013.05.073
[3] Xiang X, Zhang G K, Wang X L, et al. Review on preparation techniques of FeAl/Al2O3 composite tritium permeation barriers [J]. Rare Met. Mater. Eng., 2016, 45: 522
[3] 向 鑫, 张桂凯, 汪小琳等. FeAl/Al2O3复合阻氚涂层制备技术的研究进展 [J]. 稀有金属材料与工程, 2016, 45: 522
[4] Zhang G K, Li J, Chen C A, et al. Tritium permeation barrier-aluminized coating prepared by Al-plating and subsequent oxidation process [J]. J. Nucl. Mater., 2011, 417: 1245
doi: 10.1016/j.jnucmat.2010.12.285
[5] Sasaki T, Yakou T. Features of intermetallic compounds in aluminized steels formed using aluminum foil [J]. Surf. Coat. Technol., 2006, 201: 2131
doi: 10.1016/j.surfcoat.2006.03.018
[6] Aiello A, Ciampichetti A, Benamati G. An overview on tritium permeation barrier development for WCLL blanket concept [J]. J. Nucl. Mater., 2004, 329-333: 1398
doi: 10.1016/j.jnucmat.2004.04.205
[7] Wulf S E, Krauss W, Konys J. Comparison of coating processes in the development of aluminum-based barriers for blanket applications [J]. Fusion Eng. Des., 2014, 89: 2368
doi: 10.1016/j.fusengdes.2014.01.078
[8] Han S L, Li H L, Wang S M, et al. Influence of silicon on hot-dip aluminizing process and subsequent oxidation for preparing hydrogen/tritium permeation barrier [J]. Int. J. Hydrogen Energy, 2010, 35: 2689
doi: 10.1016/j.ijhydene.2009.04.033
[9] Yang H G, Zhan Q, Zhao W W, et al. Study of an iron-aluminide and alumina tritium barrier coating [J]. J. Nucl. Mater., 2011, 417: 1237
doi: 10.1016/j.jnucmat.2011.03.040
[10] Zhang G K, Li J, Chen C A, et al. A new preparing method and performances of FeAl/Al2O3 tritium permeation barrier [J]. Rare Met. Mater. Eng., 2011, 40: 1120
[10] 张桂凯,李 炬, 陈长安等. FeAl/Al2O3阻氚层的制备新方法与性能 [J]. 稀有金属材料与工程, 2011, 40: 1120
[11] Peng X X. Fabrication and characterization of V-Al/Al2O3 tritium permeation barrier on V-5Cr-5Ti alloy substrate [D]. Mianyang: China Academy of Engineering Physics, China, 2016
[11] 彭雪星. V-5Cr-5Ti表面V-Al/Al2O3阻氚涂层的制备及性能研究 [D]. 绵阳: 中国工程物理研究院, 2016
[12] Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
[13] Wang G, Gleeson B, Douglass D L. An extension of Wagner's analysis of competing scale formation [J]. Oxid. Met., 1991, 35: 317
doi: 10.1007/BF00738292
[14] Keller J G, Douglass D L. The high-temperature oxidation behavior of vanadium-aluminum alloys [J]. Oxid. Met., 1991, 36: 439
doi: 10.1007/BF01151591
[15] Liang Y J, Che Y C. Handbook of Inorganic Materials Thermodynamics [M]. Shenyang: Northeast University Press, 1993: 45
[15] 梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993: 45
[16] Xu C H, Gao W, Gong H. Oxidation behaviour of FeAl intermetallics. The effects of Y and/or Zr on isothermal oxidation kinetics [J]. Intermetallics, 2000, 8: 769
doi: 10.1016/S0966-9795(00)00007-8
[17] Young D J, Naumenko D, Wessel E, et al. Effect of Zr additions on the oxidation kinetics of FeCrAlY alloys in low and high pO2 gases [J]. Metall. Mater. Trans., 2011, 42A: 1173
[18] Schmiedgen M, Graat P C J, Baretzky B, et al. The initial stages of oxidation of γ-TiAl: An X-ray photoelectron study [J]. Thin Solid Films, 2002, 415: 114
doi: 10.1016/S0040-6090(02)00551-5
[19] Zhao L L, Lin J P, Zhang L Q, et al. Initial stages of oxidation of Ti45Al7Nb0.4Y alloy at 900 ℃ in air [J]. J. Mater. Res., 2010, 25: 1204
doi: 10.1557/JMR.2010.0154
[20] Liu S Y, Liu S Y, Li D J, et al. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces [J]. J. Chem. Phys., 2015, 142: 064705
doi: 10.1063/1.4907718
[21] Liu S Y, Shang J X, Wang F H, et al. Ab initio study of surface self-segregation effect on the adsorption of oxygen on the γ-TiAl (111) surface [J]. Phys. Rev., 2009, 79B: 075419
[22] Wang L, Shang J X, Wang F H, et al. Oxygen adsorption on γ-TiAl surfaces and the related surface phase diagrams: A density-functional theory study [J]. Acta Mater., 2013, 61: 1726
doi: 10.1016/j.actamat.2012.11.047
[23] Gong L, Su Q L, Deng H Q, et al. The stability and diffusion properties of foreign impurity atoms on the surface and in the bulk of vanadium: A first-principles study [J]. Comput. Mater. Sci., 2014, 81: 191
doi: 10.1016/j.commatsci.2013.08.011
[24] Zhang X M, Li Y F, He Q L, et al. Investigation of the interstitial oxygen behaviors in vanadium alloy: A first-principles study [J]. Curr. Appl. Phys., 2018, 18: 183
doi: 10.1016/j.cap.2017.12.003
[25] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev., 1990, 41B: 7892(R)
[26] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev., 1992, 45B: 13244
[27] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
[28] Fischer T H, Almlof J. General methods for geometry and wave function optimization [J]. J. Phys. Chem., 1992, 96: 9768
doi: 10.1021/j100203a036
[29] Rochana P, Lee K, Wilcox J. Nitrogen adsorption, dissociation, and subsurface diffusion on the vanadium (110) surface: A DFT study for the nitrogen-selective catalytic membrane application [J]. J. Phys. Chem., 2014, 118C: 4238
[30] Kittel C. Introduction to Solid State Physics [M]. 7th Ed., New York: Wiley, 1996: 1
[31] Chohan U K, Koehler S P K, Jimenez-Melero E. Incipient FeO(111) monolayer formation during O-adsorption on Fe(110) surface [J]. Comput. Mater. Sci., 2017, 134: 109
doi: 10.1016/j.commatsci.2017.03.033
[32] Fujiwara M, Natesan K, Satou M, et al. Effects of doping elements on oxidation properties of V-Cr-Ti type alloys in several environments [J]. J. Nucl. Mater., 2002, 307-311: 601
doi: 10.1016/S0022-3115(02)01101-7
[33] Fujiwara M, Takanashi K, Satou M, et al. Influence of Cr, Ti concentrations on oxidation and corrosion resistance of V-Cr-Ti type alloys [J]. J. Nucl. Mater., 2004, 329-333: 452
doi: 10.1016/j.jnucmat.2004.04.090
[34] Natesan K, Uz M. Oxidation performance of V-Cr-Ti alloys [J]. Fusion Eng. Des., 2000, 51-52: 145
doi: 10.1016/S0920-3796(00)00308-2
[35] Natesan K, Soppet W K. Effect of oxygen and oxidation on tensile properties of V-5Cr-5Ti alloy [J]. J. Nucl. Mater., 1996, 233-237: 482
doi: 10.1016/S0022-3115(96)00235-8
[36] Maurice V, Despert G, Zanna S, et al. XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys [J]. Acta Mater., 2007, 55: 3315
doi: 10.1016/j.actamat.2007.01.030
[1] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[2] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[3] 周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
[4] 崔荣华, 王歆钰, 董正超, 仲崇贵. Mg1-xZnx合金的弹性和热力学性质的第一性原理研究[J]. 金属学报, 2017, 53(9): 1133-1139.
[5] 陶辉锦,周珊,刘宇,尹健,许昊. D019-Ti3Al中点缺陷浓度与相互作用的第一性原理研究[J]. 金属学报, 2017, 53(6): 751-759.
[6] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
[7] 单麟婷, 巴德纯, 曹青, 侯雪艳, 李建昌. Ce-Cu共掺杂对SnO2薄膜光电特性的影响*[J]. 金属学报, 2014, 50(1): 95-102.
[8] 张旭东,王绍青. Al3Sc和Al3Zr金属间化合物热力学性质的第一性原理计算[J]. 金属学报, 2013, 29(4): 501-505.
[9] 李泓霖,张仲,吕英波,黄金昭,刘如喜. Eu掺杂ZnO结构光电性质的第一性原理及实验研究[J]. 金属学报, 2013, 29(4): 506-512.
[10] 董明慧 韩培德 张彩丽 杨艳青 张莉莉 李洪飞. Al-Mg合金中层错和孪晶形变能的第一性原理研究[J]. 金属学报, 2011, 47(5): 573-577.
[11] 张威虎 张富春 张志勇 阎军峰. Pb0.5Sr0.5TiO3精细结构的第一性原理分析[J]. 金属学报, 2009, 45(2): 217-222.
[12] 牛建钢 王宝军 王翠表 田晓. 第一性原理计算TiN(111)/BN/TiN(111)界面的电子结构、成键特性和结合强度[J]. 金属学报, 2009, 45(10): 1185-1189.