Please wait a minute...
金属学报  2020, Vol. 56 Issue (1): 21-35    DOI: 10.11900/0412.1961.2019.00137
  综述 本期目录 | 过刊浏览 |
高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展
吴静,刘永长(),李冲,伍宇婷,夏兴川,李会军
天津大学材料科学与工程学院水利安全与仿真国家重点实验室 天津 300354
Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents
WU Jing,LIU Yongchang(),LI Chong,WU Yuting,XIA Xingchuan,LI Huijun
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
引用本文:

吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
Jing WU, Yongchang LIU, Chong LI, Yuting WU, Xingchuan XIA, Huijun LI. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. Acta Metall Sin, 2020, 56(1): 21-35.

全文: PDF(26034 KB)   HTML
摘要: 

Ni3Al基高温合金因其较高的承温能力、优异的高温抗氧化/耐蚀性、较低的密度及生产成本,拥有广阔的应用前景而受到了大量的关注。Ni3Al基高温合金进一步的推广应用迫切需要在确保可焊性的同时提高其热强性,在此背景下,本文首先简要阐述了在Ni3Al基高温合金的成分设计中,Fe、Cr组元的添加可有效改善Ni3Al基高温合金的相组成及焊接性能。针对可焊性优异的合金成分调整,进一步分析了一种高Fe、Cr元素添加Ni3Al基高温合金凝固过程的多相转变特征,对其在不同高温冷却、高温退火、长期时效工艺下的多相组织(γ'+γ两相、枝晶间β相、γ'包覆层等)演变规律进行了总结,并探讨了复杂组织变量(初生γ'相尺寸、β相形态、β内相演化、γ'包覆层宽化)对其蠕变行为的影响。最后,总结了多相Ni3Al基高温合金连接工艺的最新研究进展,并对多相Ni3Al基高温合金的进一步发展进行了展望。

关键词 高温合金Ni3Al基成分设计热处理组织演变蠕变行为    
Abstract

Owing to the high temperature resistance, excellent high temperature oxidation and corrosion resistance, low density and production cost, Ni3Al-based intermetallic alloys have broad applications and attract much attention. In order to widen the application field of the Ni3Al-based superalloy, it is urgently important to improve the high-temperature performance on the basis of good weldability. Under this background, in the composition design of Ni3Al alloy, the high Fe and Cr contents can effectively enhance the phase composition and weldability of Ni3Al-based intermetallic alloys. Based on this, the microstructural characterization and phase separation sequences during solidification of a newly designed multiphase Ni3Al-based intermetallic alloy modified with high Fe and Cr elements are analyzed. On account of the typical solidification structure of the multiphase Ni3Al-based intermetallic alloy comprising γ'+γ dendrite, interdendritic β and γ'-envelope, etc., the microstructural evolutions of the alloy under different solution cooling rates, high temperature annealing, and long-term ageing processes are summarized. The effects of its corresponding complex microstructural variables (size of primary γ' phase, morphology of β, phase evolution in the interior of β, widening of γ'-envelope) on the creep behaviors of the multiphase Ni3Al-based intermetallic alloy are systematically discussed. Recent advances in welding and joining of multiphase Ni3Al-based intermetallic alloy are summarized, and the development of multiphase Ni3Al-based intermetallic alloy is also prospected.

Key wordssuperalloy    Ni3Al-based    composition design    heat treatment    microstructural evolution    creep behavior
收稿日期: 2019-04-29     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金项目(51474156);国家自然科学基金项目(51604193);国家自然科学基金项目(U1660201);国家高技术研究发展计划项目(2015AA042504)
作者简介: 吴 静,女,1990年生,博士生
图1  一种新型多相Ni3Al基高温合金铸态组织的SEM像
图2  多相Ni3Al基高温合金枝晶干γ′+γ两相组织的TEM像和SAED花样
图3  多相Ni3Al基高温合金凝固过程中主要相析出顺序示意图
图4  枝晶干γ'+γ两相组织中初生及二次γ'相析出尺寸与冷速关系的拟合结果[73]
图5  经1200 ℃、10 h固溶处理后,不同冷却方式对枝晶间β相及内部析出相演变的影响[73]
图6  经1200 ℃、10 h固溶处理后空冷,β相中开始析出α-Cr相的HRTEM像[73]
图7  1160~1280 ℃、10 h范围内不同温度高温退火,对多相Ni3Al基高温合金中β相演变及800 ℃蠕变行为的影响[65]

Temperature

Interdendritic βSize of γ'+γ dendrite

Steady-state creep rate ε˙ss

%·h-1

Creep strain to fracture εtotal / %

Creep rupture life

ttotal / h

Volume fraction

%

Width

μm

γ'

μm

γ

μm

γ'+γ

μm

128020.8337.550.91±0.170.09±0.031.00±0.200.001141.401611
124020.4418.580.77±0.100.07±0.030.84±0.130.001451.736626
120019.4314.700.70±0.140.06±0.020.76±0.160.001752.398643
116020.0610.730.64±0.100.05±0.020.69±0.120.002033.212665
As-cast19.377.680.48±0.080.04±0.020.52±0.100.006072.094194
表1  多相Ni3Al基高温合金经1160~1280 ℃、10 h不同温度高温退火后组织参数及相应800 ℃、200 MPa蠕变性能数据[65]
图8  铸态合金经800 ℃、1000 h时效并在800 ℃、220 MPa蠕变断裂后,试样近断口处γ'+γ两相组织内形成R型γ'筏状结构的SEM像
图9  铸态合金经800 ℃时效1 h后枝晶间β相内析出的交叉针片状γ'相形貌
图10  1200 ℃、10 h退火试样800 ℃长期时效时γ'相包覆层组织宽化示意图
图11  1200 ℃、10 h退火态试样经800 ℃、200 MPa蠕变断裂后,枝晶干γ′+γ两相组织内位错形态
图12  1200 ℃、10 h退火试样在800 ℃、1000 h长期时效,并经800 ℃、220 MPa蠕变断裂后近断口组织中裂纹的萌生与扩展
图13  1200 ℃、10 h退火态试样在800 ℃、1000 h长期时效,并经800 ℃、220 MPa蠕变断裂后的断口组织
[1] Huang Q Y, Li H K. Superalloys [M]. Beijing: Metallurgical Industry Press, 2000: 4
[1] (黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 4)
[2] Li J R, Xiong J C, Tang D Z. Advanced High Temperature Structural Materials and Technology (Book 1) [M]. Beijing: National Defense Industry Press, 2012: 5
[2] (李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术(上) [M]. 北京: 国防工业出版社, 2012: 5)
[3] Reed R C. The Superalloys Fundamentals and Applications [M]. Cambridge, UK: Cambridge University Press, 2006: 19
[4] Tian S G, Wu J, Shu D L, et al. Influence of element Re on deformation mechanism within γ′ phase of single crystal nickel-based superalloys during creep at elevated temperatures [J]. Mater. Sci. Eng., 2014, A616: 260
[5] Tian S G, Zhang B S, Shu D L, et al. Creep properties and deformation mechanism of the containing 4.5Re/3.0Ru single crystal nickel-based superalloy at high temperatures [J]. Mater. Sci. Eng., 2015, A643: 119
[6] Zhang Y G, Han Y F, Chen G L. Structural Intermetallics [M]. Beijing: National Defense Industry Press, 2001: 611
[6] (张永刚, 韩雅芳, 陈国良. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2001: 611)
[7] David S A, Deevi S C. Welding of unique and advanced ductile intermetallic alloys for high-temperature applications [J]. Sci. Technol. Weld. Join., 2017, 22: 681
[8] Westbrook J H. Defect structure and the temperature dependence of hardness of an intermetallic compound [J]. J. Electrochem. Soc., 1957, 104: 369
[9] Liu C T, Sikka V K. Nickel aluminides for structural use [J]. JOM, 1986, 38(5): 19
[10] Sikka V K, Mavity J T, Anderson K. Processing of nickel aluminides and their industrial applications [J]. Mater. Sci. Eng., 1992, A153: 712
[11] Sikka V K, Deevi S C, Viswanathan S, et al. Advances in processing of Ni3Al-based intermetallics and applications [J]. Intermetallics, 2000, 8: 1329
[12] Jozwik P, Polkowski W, Bojar Z. Applications of Ni3Al based intermetallic alloys—Current stage and potential perceptivities [J]. Materials, 2015, 8: 2537
[13] Deevi S C, Sikka V K. Nickel and iron aluminides: An overview on properties, processing, and applications [J]. Intermetallics, 1996, 4: 357
[14] Aoki K, Izumi O. Improvement in room temperature ductility of the L12 type intermetallic compound Ni3Al by boron addition [J]. J. Japan Inst. Met., 1979, 43: 1190
[15] Liu C T, White C L, Horton J A. Effect of boron on grain-boundaries in Ni3Al [J]. Acta Metall., 1985, 33: 213
[16] Horton J A, Miller M K. Atom probe analysis of grain boundaries in rapidly-solidified Ni3Al [J]. Acta Metall., 1987, 35: 133
[17] Guo J T, Li H, Sun C, et al. Effect of Zr, Cr and B additives on microstructure and mechanical properties of Ni3Al alloys [J]. Acta Metall. Sin., 1989, 25(6): 22
[17] (郭建亭, 李 辉, 孙 超等. Zr, Cr和B对Ni3Al合金组织和力学性能的影响 [J]. 金属学报, 1989, 25(6): 22)
[18] Li Y F, Guo J T, Zhou L F, et al. Effect of recrystallization on room-temperature mechanical properties of Zr-doped Ni3Al alloy [J]. Mater. Lett., 2004, 58: 1853
[19] Sikka V K, Santella M L, Angelini P, et al. Large-scale manufacturing of nickel aluminide transfer rolls for steel austenitizing furnaces [J]. Intermetallics, 2004, 12: 837
[20] Lee D B, Santella M L. High temperature oxidation of Ni3Al alloy containing Cr, Zr, Mo, and B [J]. Mater. Sci. Eng., 2004, A374: 217
[21] Tan Y N, Zhao X H, Gui Z L. Development and application of BKHA series Ni3Al-based superalloy in Russia [J]. Aviat. Maint. Eng., 1997, (5): 6
[21] (谭永宁, 赵希宏, 桂中楼. 俄罗斯ВКНА系列Ni3Al基合金的发展和应用 [J]. 航空工程与维修, 1997, (5): 6)
[22] Han Y F, Li S H, Jin Y, et al. Effect of 900-1150 ℃ aging on the microstructure and mechanical properties of a DS casting Ni3Al-base alloy IC6 [J]. Mater. Sci. Eng., 1995, A192-193: 899
[23] Xiao C B, Han Y F, Li S S, et al. Effect of high temperature aging on microstructure and mechanical properties of a directionally solidified Ni3Al base alloy IC6A [J]. Trans. Nonferrous Met. Soc. China, 2002, 12: 656
[24] Li P, Li S S, Han Y F. Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX [J]. Intermetallics, 2011, 19: 182
[25] Zhang H J, Wen W D, Cui H T. Behaviors of IC10 alloy over a wide range of strain rates and temperatures: Experiments and modeling [J]. Mater. Sci. Eng., 2009, A504: 99
[26] Zhang H J, Wen W D, Cui H T. An experimental study on constitutive equations of alloy IC10 over a wide range of temperatures and strain rates [J]. Mater. Des., 2012, 36: 130
[27] Li J, Hou J B, Zhang S. Effect of braze on creep strength at high temperature of TLP diffusion bonding joint for IC10 alloy [J]. Trans. Mater. Heat Treat., 2016, 37(1): 195
[27] (李 菊, 侯金保, 张 胜. 钎焊循环对IC10合金TLP扩散焊接头高温持久性能影响 [J]. 材料热处理学报, 2016, 37(1): 195)
[28] Cui D L, Xie X Y, Li S S, et al. Heat treatment of a Ni3Al-based single crystal alloy IC32 [J]. Mater. Sci. Forum, 2013, 747-748: 665
[29] Zhang X E, Luo H L, Li S P, et al. Effection of alloying elements on microstructures of MX 246 and MX 246A Ni3Al-based alloys [J]. J. Iron Steel Res. Inter., 2007, 14(5 suppl.1: 45
[30] Feng D, Li S P, Luo H L, et al. Microstructure and properties of modified cast Ni3Al-base MX246 alloys [J]. Acta Metall. Sin., 2002, 38: 1181
[30] (冯 涤, 李尚平, 骆合力等. 改性铸造Ni3Al基合金MX246组织与性能研究 [J]. 金属学报, 2002, 38: 1181)
[31] Wang J T, Han W, Luo H L, et al. Hot deformation behavior of Ni3Al-based alloy MX246A [J]. J. Iron Steel Res. Inter., 2014, 21: 264
[32] Luo H L, Li S P, Cao X, et al. A weldable and high-strength Ni3Al based MX246AG alloy [J]. J. Iron Steel Res., 2011, 23(suppl. 2): 559
[32] (骆合力, 李尚平, 曹 栩等. 可焊高强Ni3Al基MX246AG合金研究 [J]. 钢铁研究学报, 2011, 23(增刊2): 559)
[33] Ochial S, Oya Y, Suzuki T. Alloying behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge [J]. Acta Metall., 1984, 32: 289
[34] Taub A I, Chang K M, Liu C T. Effects of testing environment on the elevated temperature ductility of boron-doped Ni3Al [J]. Scr. Metall., 1986, 20: 1613
[35] Liu C T, White C L, Lee E H. Effect of test environment on ductility and fracture behavior of boron-doped Ni3Al at 600 ℃ [J]. Scr. Metall., 1985, 19: 1247
[36] George E P, Liu C T, Pope D P. Environmental embrittlement: The major cause of room-temperature brittleness in polycrystalline Ni3Al [J]. Scr. Metall. Mater., 1992, 27: 365
[37] Liu C T, Jemian W, Inouye H, et al. Initial development of nickel and nickel-iron aluminides for structural uses (No.ORNL-6067) [R]. TN (USA): Oak Ridge National Laboratory, 1984
[38] Takasugi T, Izumi O, Masahashi N. Electronic and structural studies of grain boundary strength and fracture in Ll2 ordered alloys—II. On the effect of third elements in Ni3Al alloy [J]. Acta Metall., 1985, 33: 1259
[39] Guo J T. Effects of several minor elements on superalloys and their mechanism [J]. Chin. J. Nonferrous Met., 2011, 21: 465
[39] (郭建亭. 几种微量元素在高温合金中的作用与机理 [J]. 中国有色金属学报, 2011, 21: 465)
[40] Popov A A. Effect of electronic nature and substitution behavior of ternary microadditions on the ductility of polycrystalline nickel aluminides [J]. Acta Mater., 1997, 45: 1613
[41] Liu C T, White C L. Dynamic embrittlement of boron-doped Ni3Al alloys at 600 ℃ [J]. Acta Metall., 1987, 35: 643
[42] ?ermák J, Rothová V. Surface barrier for hydrogen permeability in Ni3Al—Influence of Cr, Fe and Zr [J]. Intermetallics, 2001, 9: 403
[43] Chen J Y, Zhao B, Feng Q, et al. Effects of Ru and Cr on γ/γ′ microstructural evolution of Ni-based single crystal superalloys during heat treatment [J]. Acta Metall. Sin., 2010, 46: 897
[43] (陈晶阳, 赵 宾, 冯 强等. Ru和Cr对镍基单晶高温合金γ/γ′热处理组织演变的影响 [J]. 金属学报, 2010, 46: 897)
[44] Chen J Y, Feng Q, Cao L M, et al. Improvement of stress-rupture property by Cr addition in Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2011, A528: 3791
[45] Ai C, Li S S, Zhao X B, et al. Influence of solidification history on precipitation behavior of TCP phase in a completely heat-treated Ni3Al based single crystal superalloy during thermal exposure [J]. J. Alloys Compd., 2017, 722: 740
[46] Shi Z X, Liu S Z, Wang X G, et al. Effects of Cr content on microstructure and mechanical properties of single crystal superalloy [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 776
[47] Sato A, Yeh A C, Kobayashi T, et al. Fifth generation Ni based single crystal superalloy with superior elevated temperature properties [J]. Energy Mater., 2007, 2: 19
[48] Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications [J]. Aerosp. Sci. Technol., 1999, 3: 513
[49] Sato A, Harada H, Yokokawa T, et al. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys [J]. Scr. Mater., 2006, 54: 1679
[50] Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
[50] (郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722)
[51] Dong J X, Xie X S. α-Cr precipitation behavior and its effect on high Cr-containing superalloys [J]. Acta Metall. Sin., 2005, 41: 1159
[51] (董建新, 谢锡善. 不同Cr含量高温合金中α-Cr相析出行为及作用 [J]. 金属学报, 2005, 41: 1159)
[52] Miller C, Field R, Kaufman M. Phase stability of γ-Ni2Cr and α-Cr in the Ni-Cr binary [J]. Acta Mater., 2018, 157: 1
[53] Nicholls J R, Rawlings R D. A M?ssbauer effect study of Ni3Al with iron additions [J]. Acta Metall., 1977, 25: 187
[54] David S A, Jemian W A, Liu C T, et al. Welding and weldability of nickel-iron aluminides [J]. Weld. Res. Suppl., 1985, 1: 22
[55] Guard R W, Westbrook J H. Alloying behavior of Ni3Al (γ-phase) [J]. Trans. AIMME, 1959, 215: 807
[56] Li Y F, Li C, Wu J, et al. Formation of multiply twinned mortensite plates in rapidly solidified Ni3Al-based superalloys [J]. Mater. Lett., 2019, 250: 147
[57] Rivlin V G, Raynor G V. Critical evaluation of constitution of aluminium-iran-silicon systems [J]. Int. Met. Rev., 1981, 26: 133
[58] Wu Y T, Liu Y C, Li C, et al. Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression [J]. J. Alloys Compd., 2017, 712: 687
[59] Gao S, Hou J S, Dong K X, et al. Influences of cooling rate after solution treatment on microstructural evolution and mechanical properties of superalloy Rene 80 [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 261
[60] Behrouzghaemi S, Mitchell R J. Morphological changes of γ' precipitates in superalloy IN738LC at various cooling rates [J]. Mater. Sci. Eng., 2008, A498: 266
[61] Huang G C, Liu G Q, Feng M N, et al. The effect of cooling rates from temperatures above the γ′ solvus on the microstructure of a new nickel-based powder metallurgy superalloy [J]. J. Alloys Compd., 2018, 747: 1062
[62] Sajjadi S A, Elahifar H R, Farhangi H. Effects of cooling rate on the microstructure and mechanical properties of the Ni-base superalloy UDIMET 500 [J]. J. Alloys Compd., 2008, 455: 215
[63] Singh A R P, Nag S, Hwang J Y, et al. Influence of cooling rate on the development of multiple generations of γ′ precipitates in a commercial nickel base superalloy [J]. Mater. Charact., 2011, 62: 878
[64] Milenkovic S, Sabirov I, LLorca J. Effect of the cooling rate on microstructure and hardness of MAR-M247 Ni-based superalloy [J]. Mater. Lett., 2012, 73: 216
[65] Wu J, Li C, Liu Y C, et al. Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy [J]. Mater. Sci. Eng., 2019, A743: 623
[66] Liang Y C, Guo J T, Xie Y, et al. Effect of growth rate on the tensile properties of DS NiAl/Cr(Mo) eutectic alloy produced by liquid metal cooling technique [J]. Intermetallics, 2010, 18: 319
[67] Sheng L Y, Xie Y, Xi T F, et al. Microstructure characteristics and compressive properties of NiAl-based multiphase alloy during heat treatments [J]. Mater. Sci. Eng., 2011, A528: 8324
[68] Sheng L Y, Zhang W, Guo J T, et al. Microstructure evolution and mechanical properties' improvement of NiAl-Cr(Mo)-Hf eutectic alloy during suction casting and subsequent HIP treatment [J]. Intermetallics, 2009, 17: 1115
[69] Wang L, Shen J. Effect of withdrawal rate on the microstructure and room temperature mechanical properties of directionally solidified NiAl-Cr(Mo)-(Hf, Dy)-4Fe alloy [J]. J. Alloys Compd., 2016, 663: 187
[70] Lapin J, Pelachová T, Bajana O. Microstructure and mechanical properties of a directionally solidified and aged intermetallic Ni-Al-Cr-Ti alloy with β-γ'-γ-α structure [J]. Intermetallics, 2000, 8: 1417
[71] Kim S H, Wee D M, Oh M H. Effects of ternary additions on the thermoelastic martensitic transformation of NiAl [J]. Metall. Mater. Trans., 2003, 34A: 2089
[72] Zhou L, Mehta A, Cho K, et al. Composition-dependent interdiffusion coefficient, reduced elastic modulus and hardness in γ-, γ′- and β-phases in the Ni-Al system [J]. J. Alloys Compd., 2017, 727: 153
[73] Wu J, Li C, Liu Y C, et al. Influences of solution cooling rate on microstructural evolution of a multiphase Ni3Al-based intermetallic alloy [J]. Intermetallics, 2019, 109: 48
[74] Qian M, Luo H L, Ding C H, et al. The effect of long term high temperature annealing on twinning and detwinning of the wrought Ni3Al-based alloy [J]. Mater. Charact., 2017, 132: 458
[75] Misra A, Gibala R. Plasticity in multiphase intermetallics [J]. Intermetallics, 2000, 8: 1025
[76] Campbell C E. Assessment of the diffusion mobilites in the γ' and B2 phases in the Ni-Al-Cr system [J]. Acta Mater., 2008, 56: 4277
[77] Duan X T, Li S P, Luo H L, et al. Heat treatment process for Ni3Al-based wrought superalloy [J]. J. Iron Steel Res., 2015, 27(11): 60
[77] (段修涛, 李尚平, 骆合力等. 变形Ni3Al基合金的热处理工艺 [J]. 钢铁研究学报, 2015, 27(11): 60)
[78] Wu Y T, Liu Y C, Li C, et al. Coarsening behavior of γ′ precipitates in the γ'+γ area of a Ni3Al-based alloy [J]. J. Alloys Compd., 2019, 771: 526
[79] Cui C Y, Guo J T, Qi Y H, et al. Effect of Hf on Microstructure and high-temperature strength of a cast NiAl/Cr(Mo) alloy [J]. Mater. Trans., 2001, 42: 1700
[80] Zaitsev A A, Sentyurina Z A, Levashov E A, et al. Structure and properties of NiAl-Cr(Co, Hf) alloys prepared by centrifugal SHS casting followed by vacuum induction remelting. Part 2—Evolution of the structure and mechanical behavior at high temperature [J]. Mater. Sci. Eng., 2017, A690: 473
[81] Zaitsev A A, Sentyurina Z A, Levashov E A, et al. Structure and properties of NiAl-Cr(Co, Hf) alloys prepared by centrifugal SHS casting. Part 1—Room temperature investigations [J]. Mater. Sci. Eng., 2017, A690: 463
[82] Pekarskaya E, Botton G A, Jones C N, et al. The effect of annealing on the microstructure and tensile properties of a β/γ' Ni-Al-Fe alloy [J]. Intermetallics, 2000, 8: 903
[83] Misra A, Gibala R, Noebe R D. Deformation and fracture behavior of a directionally solidified β/γ' Ni-30 at. pct Al alloy [J]. Metall. Mater. Trans., 1999, 30A: 1003
[84] Yang R, Leake J A, Cahn R W. Three-phase (β+β'+γ') Ni-Al-Ti-(Cr, Fe) alloys for high temperature use [J]. Mater. Sci. Eng., 1992, A152: 227
[85] Hu L, Hu W, Gottstein G, et al. Investigation into microstructure and mechanical properties of NiAl-Mo composites produced by directional solidification [J]. Mater. Sci. Eng., 2012, A539: 211
[86] Peng W K, Run C S, Dai Y F, et al. Study on welding properties and technology of Ni3Al-based superalloy JG4356 [J]. Hot Work. Technol., 2019, 48(1): 55
[86] (彭为康, 润长生, 戴延丰等. Ni3Al基高温合金JG4356焊接性能和工艺研究 [J]. 热加工工艺, 2019, 48(1): 55)
[87] Yang Z W, Lian J, Cai X Q, et al. Microstructure and mechanical properties of Ni3Al-based alloy joint transient liquid phase bonded using Ni/Ti interlayer [J]. Intermetallics, 2019, 109: 179
[88] Liu Y C, Zhang H J, Li C, et al. Microstructure evolution of inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
[88] (刘永长, 张宏军, 李 冲等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653)
[89] Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
[89] (刘永长, 郭倩颖, 李 冲等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259)
[90] Zhang H J, Li C, Guo Q Y, et al. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants [J]. Scr. Mater., 2019, 164: 66
[91] Wang F, Xu W L, Ma D X, et al. Co-growing mechanism of γ/γ' eutectic on MC-type carbide in Ni-based single crystal superalloys [J]. J. Alloys Compd., 2019, 792: 505
[92] Zhang X, Li H W, Zhan M. Mechanism for the macro and micro behaviors of the Ni-based superalloy during electrically-assisted tension: Local Joule heating effect [J]. J. Alloys Compd., 2018, 742: 480
[93] Reed R C, Tao T, Warnken N. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5898
[94] Tian C G, Han G M, Cui C Y, et al. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy [J]. Mater. Des., 2014, 64: 316
[95] Kontis P, Yusof H A M, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy [J]. Acta Mater., 2016, 103: 688
[96] Zhang H J, Li C, Liu Y C, et al. Effect of hot deformation on γ" and δ phase precipitation of Inconel 718 alloy during deformation&isothermal treatment [J]. J. Alloys Compd., 2017, 716: 65
[97] Wan H Y, Zhou Z J, Li C P, et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting [J]. J. Mater. Sci. Technol., 2018, 34: 1799
[98] Wang G W, Liang J J, Yang Y H, et al. Effects of scanning speed on microstructure in laser surface-melted single crystal superalloy and theoretical analysis [J]. J. Mater. Sci. Technol., 2018, 34: 1315
[99] Bai P, Zhang H R, Wan B B, et al. Effect of trace O element on high-temperature wettability between Ni3Al melt and Y2O3 ceramic [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 552
[100] Wu J, Li C, Liu Y C, et al. Formation and widening mechanisms of envelope structure and its effect on creep behavior of a multiphase Ni3Al-based intermetallic alloy [J]. Mater. Sci. Eng., 2019, A763: 138158
[101] Wu J, Li C, Liu Y C, et al. Precipitation of intersected plate-like γ' phase in β and its effect on creep behavior of multiphase Ni3Al-based intermetallic alloy [J]. Mater. Sci. Eng., 2019, A767: 138439
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[7] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[8] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[10] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[11] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[12] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[14] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[15] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.