Please wait a minute...
金属学报  2020, Vol. 56 Issue (1): 1-20    DOI: 10.11900/0412.1961.2019.00159
  综述 本期目录 | 过刊浏览 |
新型钴基高温合金多尺度设计的研究现状与展望
刘兴军1,2,3(),陈悦超3,卢勇3,韩佳甲3,许伟伟3,郭毅慧3,于金鑫3,魏振帮3,王翠萍3()
1. 哈尔滨工业大学(深圳)材料基因与大数据研究院  深圳 518055
2. 哈尔滨工业大学(深圳)材料科学与工程学院  深圳 518055
3. 厦门大学材料学院福建省材料基因工程重点实验室  厦门 361005
Present Research Situation and Prospect of Multi-Scale Design in Novel Co-Based Superalloys: A Review
LIU Xingjun1,2,3(),CHEN Yuechao3,LU Yong3,HAN Jiajia3,XU Weiwei3,GUO Yihui3,YU Jinxin3,WEI Zhenbang3,WANG Cuiping3()
1. Institute of Materials Genome and Big Data, Harbin Institute of Technology, Shenzhen 518055, China
2. School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
3. College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, China
引用本文:

刘兴军, 陈悦超, 卢勇, 韩佳甲, 许伟伟, 郭毅慧, 于金鑫, 魏振帮, 王翠萍. 新型钴基高温合金多尺度设计的研究现状与展望[J]. 金属学报, 2020, 56(1): 1-20.
LIU Xingjun, CHEN Yuechao, LU Yong, HAN Jiajia, XU Weiwei, GUO Yihui, YU Jinxin, WEI Zhenbang, WANG Cuiping. Present Research Situation and Prospect of Multi-Scale Design in Novel Co-Based Superalloys: A Review[J]. Acta Metall Sin, 2020, 56(1): 1-20.

全文: PDF(24999 KB)   HTML
摘要: 

近年来,材料基因组工程以及多尺度材料设计理论和计算方法的发展,为新型钴基高温合金的研发提供了新的思路。本文基于国内外新型钴基高温合金多尺度设计方面的成果以及本研究室多年来在该领域的研究工作,系统总结了材料多尺度计算方法在新型钴基高温合金领域的研究现状,总结了包括第一性原理、CALPHAD、相场法和机器学习方法在合金成分筛选、工艺设计和组织优化领域的多尺度耦合设计。在此基础上,针对各个研究方法的优势,展望了多尺度材料设计在新型钴基高温合金领域的发展趋势。

关键词 高温合金多尺度设计计算材料学材料基因    
Abstract

In recent years, the development of material genetic methods, together with multi-scale material design theory and calculation methods has provided new ideas for the alloy design of novel Co-based superalloys. Based on the published results of multi-scale design and the research work of our laboratory, this paper systematically summarizes the present research status of multi-scale design methods in the field of novel Co-based superalloys. A review of multi-scale calculation methods including first-principle calculation, CALPHAD, phase field simulation, and machine learning is presented in this paper. The development trend of multi-scale design in novel Co-based superalloys is prospected.

Key wordssuperalloy    multi-scale design    computational materials science    materials genome
收稿日期: 2019-05-20     
ZTFLH:  TG146.1  
基金资助:国家重点研发计划项目(2017YFB0702901);广东省重点领域研发计划项目(2019B0109430);国家自然科学基金项目(51831007)
作者简介: 刘兴军,男,1962年生,博士,教授
图1  过渡金属元素在fcc-Co中的扩散实验数值与多种近似拟合比较[24]
图2  过渡族金属元素分别占据Co3Al 化合物中Al位和Co位对应的反应生成能[34],元素X在Co3V中的占位倾向图[36],及L12-Co3(Ta, X)与D019-Co3(Ta, X)化合物的形成焓对比[35]
图3  Ta掺杂前后Co3(Al, W)的结构在[001]拉伸作用下的变形电荷差分密度对应的等值面图[43]
SortSystemElement X

Binary system

Co-XNi, Al, W, Ta, Ti, Cr
Ni-XAl, W, Ta, Ti, Cr
Al-XW, Ta, Ti, Cr
W-XTa, Ti, Cr
Ta-XTi, Cr
Ti-XCr

Ternary system

Co-Al-W, Ni-Al-Co, Ni-Al-W, Ni-Al-Ta, Ni-Co-W, Ni-Ti-Ta, Ni-Ti-Cr,

Co-Ni-W, Co-Ta-Cr, Co-Ta-Ni

表1  新型钴基高温合金热力学数据库
图4  Co-Al-W三元系在900 ℃时的等温截面相图[3]及计算的Co-Al-W-xNi四元系在900 ℃时的伪三元等温截面相图
图5  计算的Co-10Al-10W、Co-10Al-10W-10Ni、Co-10Al-10W-20Ni和Co-10Al-10W-30Ni合金的相分数曲线
图6  计算的Co-xNi-Al-W-15Cr合金在900 ℃时的等温截面相图
图7  合金设计与模拟过程
图8  Al和Nb在bcc、fcc和hcp相的自扩散系数[91]
图9  Ni和W在fcc Co的杂质扩散系数
图10  1473 K时Co-Cr-Mo三元体系富Co侧互扩散系数(D?ii)计算值与实验值对比,及扩散路径计算值与实验值对比[97]
图11  Co-9.0Al-9.0W合金在900 ℃ γ'析出相随时效时间的组织演变模拟图
图12  外加应力下Co-9.0Al-9.0W合金在900 ℃ γ'相随时间的组织演变模拟图
图13  Co-9.3Al-10.5W合金晶界处γ'、γ、D019三相在900 ℃随时间的组织演变模拟图
图14  基于机器学习算法的新型钴基高温合金高通量设计方法构架图[106]
图15  各算法(最小二乘法、支持向量机、人工神经网络及随机森林)对新型钴基高温合金γ'固溶温度的预测情况[106]
图16  各个模型的评估指标数值[106]
图17  4种新成分的新型钴基高温合金γ'固溶温度随机森林模型预测值与差示扫描量热法实验测试值[106],及本课题组制备的2Nb合金[106]与Co-8.8Al-9.8W-2X (X: Ti, V, Nb, Ta)合金γ'固溶温度[17]对比图
图18  基于机器学习算法的新型钴基高温合金快速设计得到的高温合金组织图[106]
[1] Sims C T, Stoloff N S, Hagel W C. Superalloys II [M]. New York: John Wiley & Sons, 1987: 1
[2] Reed R C. The Superalloys Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 1
[3] Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
[4] Suzuki A, Denolf G C, Pollock T M. Flow stress anomalies in γ/γ′ two-phase Co-Al-W-base alloys [J]. Scr. Mater., 2007, 56: 385
[5] Pollock T M, Dibbern J, Tsunekane M, et al. New Co-based γ/γ′ high-temperature alloys [J]. JOM, 2010, 62(1): 58
[6] Titus M S, Suzuki A, Pollock T M. Creep and directional coarsening in single crystals of new γ/γ′ cobalt-base alloys [J]. Scr. Mater., 2012, 66: 574
[7] Suzuki A, Inui H, Pollock T M. L12-strengthened cobalt-base superalloys [J]. Annu. Rev. Mater. Res., 2015, 45: 345
[8] Shinagawa K, Omori T, Oikawa K, et al. Ductility enhancement by boron addition in Co-Al-W high-temperature alloys [J]. Scr. Mater., 2009, 61: 612
[9] Kobayashi S, Tsukamoto Y, Takasugi T, et al. Determination of phase equilibria in the Co-rich Co-Al-W ternary system with a diffusion-couple technique [J]. Intermetallics, 2009, 17: 1085
[10] Tsukamoto Y, Kobayashi S, Takasugi T. The stability of γ'-Co3(Al, W) phase in Co-Al-W ternary system [J]. Mater. Sci. Forum, 2010, 654: 448
[11] Lass E A, Williams M E, Campbell C E, et al. γ′ Phase stability and phase equilibrium in ternary Co-Al-W at 900 ℃ [J]. J. Phase Equilib. Diffus., 2014, 35: 711
[12] Lass E A, Grist R D, Williams M E. Phase equilibria and microstructural evolution in ternary Co-Al-W between 750 and 1100 ℃ [J]. J. Phase Equilib. Diffus., 2016, 37: 387
[13] Zenk C H, Povstugar I, Li R, et al. A novel type of Co-Ti-Cr-base γ/γ′ superalloys with low mass density [J]. Acta Mater., 2017, 135: 244
[14] Bocchini P J, Sudbrack C K, Sauza D J, et al. Effect of tungsten concentration on microstructures of Co-10Ni-6Al-(0, 2, 4, 6) W-6Ti (at%) cobalt-based superalloys [J]. Mater. Sci. Eng., 2017, A700: 481
[15] Bocchini P J, Sudbrack C K, Noebe R D, et al. Effects of titanium substitutions for aluminum and tungsten in Co-10Ni-9Al-9W (at%) superalloys [J]. Mater. Sci. Eng., 2017, A705: 122
[16] Shinagawa K, Omori T, Sato J, et al. Phase equilibria and microstructure on γ′ phase in Co-Ni-Al-W system [J]. Mater. Trans., 2008, 49: 1474
[17] Omori T, Oikawa K, Sato J, et al. Partition behavior of alloying elements and phase transformation temperatures in Co-Al-W-base quaternary systems [J]. Intermetallics, 2013, 32: 274
[18] Xue F, Li Z Q, Feng Q. Mo effect on the microstructure in Co-Al-W-based superalloys [J]. Mater. Sci. Forum, 2010, 654-656: 420
[19] Feng G, Li H, Li S S, et al. Effect of Mo additions on microstructure and tensile behavior of a Co-Al-W-Ta-B alloy at room temperature [J]. Scr. Mater., 2012, 67: 499
[20] Xue F, Zhou H J, Ding X F, et al. Improved high temperature γ′ stability of Co-Al-W-base alloys containing Ti and Ta [J]. Mater. Lett., 2013, 112: 215
[21] Povstugar I, Choi P P, Neumeier S, et al. Elemental partitioning and mechanical properties of Ti-and Ta-containing Co-Al-W-base superalloys studied by atom probe tomography and nanoindentation [J]. Acta Mater., 2014, 78: 78
[22] Titus M S, Eggeler Y M, Suzuki A, et al. Creep-induced planar defects in L12-containing Co-and CoNi-base single-crystal superalloys [J]. Acta Mater., 2015, 82: 530
[23] Naghavi S S, Hegde V I, Saboo A, et al. Energetics of cobalt alloys and compounds and solute-vacancy binding in fcc cobalt: A first-principles database [J]. Acta Mater., 2017, 124: 1
[24] Naghavi S S, Hegde V I, Wolverton C. Diffusion coefficients of transition metals in fcc cobalt [J]. Acta Mater., 2017, 132: 467
[25] Neumeier S, Rehman H U, Neuner J, et al. Diffusion of solutes in fcc Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo [J]. Acta Mater., 2016, 106: 304
[26] Tian L Y, Lizárraga R, Larsson H, et al. A first principles study of the stacking fault energies for fcc Co-based binary alloys [J]. Acta Mater., 2017, 136: 215
[27] Breidi A, Allen J, Mottura A. First-principles calculations of thermodynamic properties and planar fault energies in Co3X and Ni3XL12 compounds [J]. Phys. Status Solidi, 2017, 254: 1600839
[28] Suzuki A, Pollock T M. High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys [J]. Acta Mater., 2008, 56: 1288
[29] Drapier J M, De Brouwer J L, Coutsouradis D. Refractory metals and intermetallic precipitates in cobalt-chromium [J]. Cobalt, 1965, 27: 59
[30] Peters E T, Tanner L E. A new high-temperature form of the intermetallic compound Co3V [J]. Metall. Trans. Soc. AIME, 1965, 233: 2126
[31] Blaise J M, Viatour P, Drapier J M. On the stability and precipitation of the Co3Ti phase in Co-Ti alloys [J]. Cobalt, 1970, 49: 192
[32] Aoki Y, Asami K, Yamamoto M. Transformation temperatures and magnetic properties of the ordered hexagonal VCo3 compound [J]. Phys. Status Solidi, 1974, 23: K167
[33] Xu W W, Han J J, Wang Z W, et al. Thermodynamic, structural and elastic properties of Co3X (X=Ti, Ta, W, V, Al) compounds from first-principles calculations [J]. Intermetallics, 2013, 32: 303
[34] Xu W W, Shang S L, Wang C P, et al. Accelerating exploitation of Co-Al-based superalloys from theoretical study [J]. Mater. Des., 2018, 142: 139
[35] Wang C P, Yan L H, Han J J, et al. Effects of alloying elements on the structural, elastic and thermodynamic properties of Co3Ta compounds from first-principles calculations [J]. J. Alloys Compd., 2017, 726: 490
[36] Wang C P, Deng B, Xu W W, et al. Effects of alloying elements on relative phase stability and elastic properties of L12 Co3V from first-principles calculations [J]. J. Mater. Sci., 2018, 53: 1204
[37] Jin M, Miao N H, Zhao W Y, et al. Structural stability and mechanical properties of Co3(Al, M) (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W) compounds [J]. Comp. Mater. Sci., 2018, 148: 27
[38] Wang W Y, Xue F, Zhang Y, et al. Atomic and electronic basis for solutes strengthened (010) anti-phase boundary of L12 Co3(Al, TM): A comprehensive first-principles study [J]. Acta Mater., 2018, 145: 30
[39] Chen M, Wang C Y. First-principles investigation of the site preference and alloying effect of Mo, Ta and platinum group metals in γ′-Co3(Al, W) [J]. Scr. Mater., 2009, 60: 659
[40] Chen M, Wang C Y. First-principle investigation of 3d transition metal elements in γ′-Co3(Al, W) [J]. J. Appl. Phys., 2010, 107: 093705
[41] Jiang C. First-principles study of Co3(Al, W) alloys using special quasi-random structures [J]. Scr. Mater., 2008, 59: 1075
[42] Xu W W, Han J J, Wang Y, et al. First-principles investigation of electronic, mechanical and thermodynamic properties of L12 ordered Co3(M, W)(M= Al, Ge, Ga) phases [J]. Acta Mater., 2013, 61: 5437
[43] Xu W W, Wang Y, Wang C P, et al. Alloying effects of Ta on the mechanical properties of γ' Co3(Al, W): A first-principles study [J]. Scr. Mater., 2015, 100: 5
[44] Mottura A, Janotti A, Pollock T M. A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L12-Co3(Al, W) [J]. Intermetallics, 2012, 28: 138
[45] Saal J E, Wolverton C. Energetics of antiphase boundaries in γ′ Co3(Al, W)-based superalloys [J]. Acta Mater., 2016, 103: 57
[46] Chen M, Wang C Y. First-principles study of the partitioning and site preference of Re or Ru in Co-based superalloys with γ/γ′ interface [J]. Phys. Lett., 2010, 374A: 3238
[47] Lu X G, Wang Z, Cui Y W, et al. Computational thermodynamics, computational kinetics and materials design [J]. Chin. Sci. Bull., 2013, 58: 3656
[47] (鲁晓刚, 王 卓, Cui Y W等. 计算热力学、计算动力学与材料设计 [J]. 科学通报, 2013, 58: 3656)
[48] Feng W F, Wang Q C, Zhang L. Calculation during material design, A new tendency in material design [J]. Mater. Sci. Technol., 2000, 8(4): 57
[48] (冯武锋, 王春青, 张 磊. 材料设计的发展新趋势—材料设计计算方法 [J]. 材料科学与工艺, 2000, 8(4): 57)
[49] Wang X, Zhu L L, Fang J, et al. Applications of "Materials Genome Engineering" based methods in nickel-based superalloys [J]. Sci. Technol. Rev., 2015, 33(10): 79
[49] (王 薪, 朱礼龙, 方 姣等. 基于“材料基因组工程”的3种方法在镍基高温合金中的应用 [J]. 科技导报, 2015, 33(10): 79)
[50] Dupin N, Sundman B. A thermodynamic database for Ni-base superalloys [J]. Scand. J. Metall., 2001, 30: 184
[51] Jiang L, Zhao J C, Feng G J, et al. Nickel-containing alloys, method of manufacture thereof and articles derived thereform [P]. US Pat, 006945OA1, 2005
[52] Yang S Y, Jiang M, Wang L. Applications of thermodynamic calculations of phase diagrams to new-type Co-based superalloy design [J]. J. Mater. Metall., 2011, 10: 278
[52] (杨舒宇, 蒋 敏, 王 磊. 相图热力学计算在新型钴基高温合金设计中的应用 [J]. 材料与冶金学报, 2011, 10: 278)
[53] Du Z M, Lü D X. Thermodynamic modeling of the Co-Ni-Y system [J]. Intermetallics, 2005, 13: 586
[54] Zhang Y B, Li C R, Du Z M, et al. The thermodynamic assessment of the ternary Co-Ni-Sb system [J]. Calphad, 2009, 33: 405
[55] Li C G, Zhu D M, Zhang Y B, et al. Thermodynamic assessment of the Co-Fe-Sb system [J]. Calphad, 2014, 47: 23
[56] Ruan J J, Liu X J, Yang S Y, et al. Novel Co-Ti-V-base superalloys reinforced by L12-ordered γ′ phase [J]. Intermetallics, 2018, 92: 126
[57] Liu X J, Yu Y, Liu Y H, et al. Experimental investigation and thermodynamic calculation of the phase equilibria in the Co-Cu-V ternary system [J]. J. Phase Equilib. Diffus., 2017, 38: 733
[58] Liu X J, Huang L S, Jiang H X, et al. Experimental investigation of the phase equilibria in the Co-V-Sn ternary system [J]. J. Phase Equilib. Diffus., 2017, 38: 723
[59] Liu X J, Yang S Y, Xiong H P, et al. Experimental investigation of phase equilibria in the Co-Ni-Zr ternary system [J]. Int. J. Mater. Res., 2016, 107: 887
[60] Ruan J J, Wang C P, Yang S Y, et al. Experimental investigations of microstructures and phase equilibria in the Co-V-Ta ternary system [J]. J. Alloys Compd., 2016, 664: 141
[61] Wang C P, Zhao C C, Lu Y, et al. Experimental observation of magnetically induced phase separation and thermodynamic assessment in the Co-V binary system [J]. Mater. Chem. Phys. Lett., 2015, 162A: 555
[62] Wang C P, Yang S, Yang S Y, et al. Experimental investigation of the phase Equilibria in the Co-Nb-V ternary system [J]. J. Phase Equilib. Diffus., 2015, 36: 592
[63] Ruan J J, Wang C P, Zhao C C, et al. Experimental investigation of phase equilibria and microstructure in the Co-Ti-V ternary system [J]. Intermetallics, 2014, 49: 121
[64] Wang C P, Zhao C C, Lin Z, et al. Experimental determination and thermodynamic calculation of the phase equilibria in the Co-Mn-Ta system [J]. Int. J. Mater. Res., 2014, 105: 1179
[65] Zhao C C, Yang S Y, Liu X J, et al. Experimental determination of the phase equilibria in the Co-Cr-Ta ternary system [J]. J. Alloys Compd., 2014, 608: 118
[66] Liu X J, Yu Y, Lu Y, et al. Interdiffusion and atomic mobilities in fcc Co-Ga and Co-V Alloys [J]. J. Phase Equilib. Diffus., 2018, 39: 2
[67] Sundman B, Jansson B, Andersson J O. The thermo-calc databank system [J]. Calphad, 1985, 9: 153
[68] Gómez-Acebo T, Navarcorena B, Castro F. Interdiffusion in multiphase, Al-Co-Cr-Ni-Ti diffusion couples [J]. J. Phase Equilib. Diffus., 2004, 25: 237
[69] Chen J, Liu Y J, Sheng G, et al. Atomic mobilities, interdiffusivities and their related diffusional behaviors in fcc Co-Cr-Ni alloys [J]. J. Alloys Compd., 2015, 621: 428
[70] Chen W M, Zhang L J, Li W, et al. Experimental measurements of the interdiffusivities in fcc Co-rich Co-Ti, Co-W and Co-Ti-W systems [J]. Int. J. Refract. Met. Hard. Mater., 2018, 71: 153
[71] Cui Y W, Jiang M, Ohnuma I, et al. Computational study of atomic mobility in Co-Fe-Ni ternary fcc alloys [J]. J. Phase Equilib. Diffus., 2008, 29: 312
[72] Moon K W, Campbell C E, Williams M E, et al. Diffusion in fcc Co-rich Co-Al-W alloys at 900 and 1000 ℃ [J]. J. Phase Equilib. Diffus., 2016, 37: 402
[73] Wang J F, Wang Y, Zhu N Q, et al. Experimental and computational study of interdiffusion for fcc Ni-Co-W alloys [J]. J. Phase Equilib. Diffus., 2017, 38: 37
[74] Wang Y, Lu X G. Interdiffusion and diffusion mobility for fcc Ni-Co-Mo alloys [J]. J. Phase Equilib. Diffus., 2017, 38: 656
[75] Wang Y, Zhu N Q, Wang H, et al. Interdiffusion and diffusion mobility for fcc Ni-Co-Al alloys [J]. Metall. Mater. Trans., 2017, 48A: 943
[76] Zhang W B, Liu D D, Zhang L J, et al. Experimental investigation and computational study of atomic mobility in fcc ternary Co-Cr-W alloys [J]. Calphad, 2014, 45: 118
[77] Zhou Z, Liu Y J. Atomic mobilities and diffusivities in fcc Co-Cr-Ti alloys [J]. J. Phase Equilib. Diffus., 2016, 37: 155
[78] Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution [J]. Calphad, 2008, 32: 268
[79] Kundin J, Mushongera L, Emmerich H. Phase-field modeling of microstructure formation during rapid solidification in Inconel 718 superalloy [J]. Acta Mater., 2015, 95: 343
[80] Lopez-Galilea I, Huth S, Fries S G, et al. Microsegregation and secondary phase formation during directional solidification of the single-crystal Ni-based superalloy LEK94 [J]. Metall. Mater. Trans., 2012, 43A: 5153
[81] Ta N, Zhang L J, Du Y. Design of the precipitation process for Ni-Al alloys with optimal mechanical properties: A phase-field study [J]. Metall. Mater. Trans., 2014, 45A: 1787
[82] Zhu J Z, Wang T, Ardell A J, et al. Three-dimensional phase-field simulations of coarsening kinetics of γ′ particles in binary Ni-Al alloys [J]. Acta Mater., 2004, 52: 2837
[83] Wu X C, Li Y S, Liu W, et al. Dynamics evolution of γ′ precipitates size and composition interface between γ/γ′ phases in Ni-Al alloy at different aging temperatures [J]. Rare Met., 2016, 1
[84] Takahashi A, Kobayashi Y, Kikuchi M. Phase field simulation of rafting behavior of γ' phase in nickel base superalloy [J]. Adv. Mater. Res., 2008, 33-37: 471
[85] Mushongera L T, Fleck M, Kundin J, et al. Effect of Re on directional γ′-coarsening in commercial single crystal Ni-base superalloys: A phase field study [J]. Acta Mater., 2015, 93: 60
[86] Yang M, Zhang J, Wei H, et al. Study of γ′ rafting under different stress states—A phase-field simulation considering viscoplasticity [J]. J. Alloys Compd., 2018, 769: 453
[87] Gao Y P, Ding H, Jin X J. γ' precipitation during ageing of a CoAlW alloy by phase field simulation [J]. J. Jilin Univ. (Eng. Technol. Ed.), 2011, 41: 84
[87] (高一鹏, 丁 洪, 金学军. CoAlW合金时效过程中γ'相析出的相场模拟 [J]. 吉林大学学报(工学版), 2011, 41: 84)
[88] Koyama T. Simulation of microstructural evolution based on the phase-field method and its applications to material development [J]. J. Jpn. Inst. Met., 2009, 73: 891
[88] (小山敏幸. フェーズフィールド法に基づく 組織形成シミュレーションとその材料開発への応用 [J]. 日本金属学会誌, 2009, 73: 891)
[89] Jokisaari A M, Naghavi S S, Wolverton C, et al. Predicting the morphologies of γ' precipitates in cobalt-based superalloys [J]. Acta Mater., 2017, 141: 273
[90] Shang S L, Zhou B C, Wang W Y, et al. A comprehensive first-principles study of pure elements: Vacancy formation and migration energies and self-diffusion coefficients [J]. Acta Mater., 2016, 109: 128
[91] Han J J, Wang C P, Liu X J. A modified model to predict self-diffusion coefficients in metastable fcc, bcc and hcp structures [J]. J. Phase Equilib. Diffus., 2013, 34: 17
[92] Neumann G. A model for the calculation of monovacancy and divacancy contributions to the impurity diffusion in noble metals [J]. Phys. Status Solidi, 1987, 144B: 329
[93] Mantina M, Wang Y, Chen L Q, et al. First principles impurity diffusion coefficients [J]. Acta Mater., 2009, 57: 4102
[94] Hargather C Z, Shang S L, Liu Z K. A comprehensive first-principles study of solute elements in dilute Ni alloys: Diffusion coefficients and their implications to tailor creep rate [J]. Acta Mater., 2018, 157: 126
[95] Zeng Y Z, Bai K W. High-throughput prediction of activation energy for impurity diffusion in fcc metals of Group I and VIII [J]. J. Alloys Compd., 2015, 624: 201
[96] Wu H, Lorenson A, Anderson B, et al. Robust FCC solute diffusion predictions from ab-initio machine learning methods [J]. Comp. Mater. Sci., 2017, 134: 160
[97] Wang C P, Qin S Y, Lu Y, et al. Interdiffusion and atomic mobilities in fcc Co-Cr-Mo alloys [J]. J. Phase Equilib. Diffus., 2018, 39: 437
[98] Yang Y L, Shi Z, Luo Y S, et al. Interdiffusion and atomic mobility studies in Ni-rich fcc Ni-Co-Al alloys [J]. J. Phase Equilib. Diffus., 2016, 37: 269
[99] Shi L, Yu J J, Cui C Y, et al. Effect of Ta additions on microstructure and mechanical properties of a single-crystal Co-Al-W-base alloy [J]. Mater. Lett., 2015, 149: 58
[100] Morinaga M, Yukawa N, Adachi H, et al. New PHACOMP and its application to alloy design [J]. Superalloys, 1984, 1984: 523
[101] Fischer C C, Tibbetts K J, Morgan D, et al. Predicting crystal structure by merging data mining with quantum mechanics [J]. Nat. Mater., 2006, 5: 641
[102] Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments [J]. Sci. Adv., 2018, 4: eaaq1566
[103] Nosengo N. Can artificial intelligence create the next wonder material? [J]. Nature, 2016, 533: 22
[104] Raccuglia P, Elbert K C, Adler P D F, et al. Machine-learning-assisted materials discovery using failed experiments [J]. Nature, 2016, 533: 73
[105] Guo J T, Hou J S, Zhou L Z, et al. Prediction and improvement of mechanical properties of corrosion resistant superalloy K44 with adjusting minor additions C, B and Hf [J]. Mater. Trans., 2006, 47: 198
[106] Yu J X, Guo S, Chen Y C, et al. A two-stage predicting model for γ′ solvus temperature of L12-strengthened Co-base superalloys based on machine learning [J]. Intermetallics, 2019, 110: 106466
[107] Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Min. Knowl. Dis., 1998, 2: 121
[108] Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19: 711
[109] Breiman L. Random forests [J]. Mach. Learn., 2001, 45: 5
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[6] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[8] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[9] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[10] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[11] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[12] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.