Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1581-1592    DOI: 10.11900/0412.1961.2019.00208
  研究论文 本期目录 | 过刊浏览 |
蠕变对焊后热处理残余应力预测精度和计算效率的影响
逯世杰,王虎,戴培元,邓德安()
重庆大学材料科学与工程学院 重庆 400044
Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment
LU Shijie,WANG Hu,DAI Peiyuan,DENG Dean()
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
引用本文:

逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. Acta Metall Sin, 2019, 55(12): 1581-1592.

全文: PDF(11032 KB)   HTML
摘要: 

基于MSC. Marc软件平台,开发了考虑蠕变效应的热-弹-塑性有限元计算方法。采用该方法模拟了Q345平板接头TIG重熔焊接过程和焊后热处理过程中的应力场,并重点研究了焊后热处理过程中蠕变效应对焊接残余应力的影响,基于数值模拟结果研究了焊后热处理消除残余应力的机理。同时,采用盲孔法实测了焊接及热处理后平板接头的残余应力,并与数值模拟结果进行了对比。此外,还探讨了2种不同的蠕变模型对焊后热处理残余应力计算精度的影响,针对Q345低合金高强钢,提出了一种简易高效、适合于工程应用的蠕变模型。结果表明:数值模拟得到的残余应力与实验值吻合良好,验证了所开发的集成计算方法的有效性。热处理计算过程有必要考虑材料的蠕变效应,否则会严重高估热处理后的残余应力。采用本工作提出的简易蠕变模型,在较少损失计算精度的前提下可使计算效率提高10倍左右。

关键词 残余应力焊后热处理蠕变数值模拟    
Abstract

Low alloy high strength steel, owing to its good mechanical properties and low cost, is widely used in bridge, building, pressure vessel and other engineering structures. Steel structures will inevitably produce residual stress and deformation after welding with the characteristics of concentrated heat source and local heating. Heat treatment is recognized as an effective method to eliminate the residual stress after welding. However, there is no quantitative and systematic study on the mechanism of heat treatment to eliminate residual stress when numerical simulation method is used to study post weld heat treatment (PWHT). Meanwhile, creep is an important factor in the process of PWHT on low alloy high strength steel. It is necessary to study the influence of creep on residual stress prediction so as to develop a simplified creep model used in practice more efficiently. Based on MSC. Marc software platform, a thermal-elastic-plastic finite element method (T-E-P FEM) considering creep effect is developed. The stress field during welding and PWHT of Q345 remelting joint was simulated by the integrated calculation method. The effect of creep on welding residual stress during PWHT was emphatically studied. Based on the results of numerical simulation, the mechanism of eliminating residual stress by PWHT was explored. At the same time, the residual stresses of welded and heat treated joints were measured by blind-hole method, and the results were compared with those of numerical simulation. In addition, the effect of two different creep models on the calculation accuracy of residual stress in PWHT is also discussed. A simple and efficient creep model suitable for engineering application is proposed for Q345 low alloy high strength steel. The results show that the residual stresses obtained by numerical simulation agree well with the experimental values, which verifies the validity of the integrated calculation method developed. It is necessary to consider creep effect in the process of PWHT, otherwise the residual stress after heat treatment will be seriously overestimated. By using the simple creep model proposed, the calculation efficiency could be increased by about 10 times with less loss of calculation accuracy.

Key wordsresidual stress    post weld heat treatment (PWHT)    creep    numerical simulation
收稿日期: 2019-06-27     
ZTFLH:  TG404  
基金资助:国家自然科学基金项目(No.51875063)
作者简介: 逯世杰,男,1991年生,硕士生
图1  试件几何尺寸及实物照片
图2  焊后热处理的温度循环曲线
图3  残余应力测量位置
图4  Q345钢的热物理性能参数[20]和力学性能参数[21]
图5  3D有限元模型
表1  数值模拟计算案例
图6  4个不同计算案例得到的纵向残余应力分布云图及中央截面焊缝附近的应力分布
图7  4个不同计算案例得到的横向残余应力分布云图及中央截面焊缝附近的应力分布
图8  焊接完成后沿直线L1上的纵向和横向残余应力分布
图9  不同计算案例沿直线L1上的纵向和横向残余应力分布
图10  热处理过程中A点纵向残余应力随时间的变化
图11  热处理过程中A点的弹性应变、塑性应变和蠕变应变随时间的变化
[1] Zou Z D, Li Y J, Yin S K, et al. Welding and Engineering Application of Low Alloy Modulated High Strength Steel [M]. Beijing: Chemical Industry Press, 2000: 26
[1] (邹增大, 李亚江, 尹士科等. 低合金调质高强度钢焊接及工程应用 [M]. 北京: 化学工业出版社, 2000: 26)
[2] Chen X Z, Huang Y M. Hot deformation behavior of HSLA steel Q690 and phase transformation during compression [J]. J. Alloys Compd., 2015, 619: 564
[3] Ji G L, Li F G, Li Q H, et al. Research on the dynamic recrystallization kinetics of Aermet100 steel [J]. Mater. Sci. Eng., 2010, A527: 2350
[4] Dai W Z, Liu J F, Gao L. Application Technology and Case of Welding Engineering for Building Steel Structures [M]. Beijing: Chemical Industry Press, 2016: 38
[4] (戴为志, 刘景凤, 高 良. 建筑钢结构焊接工程应用技术及案例 [M]. 北京: 化学工业出版社, 2016: 38)
[5] Yan H. The experiment study of residual stress in welded steel structure and FEM analysis [D]. Wuhan: Wuhan University of Technology, 2006
[5] (严 浩. 钢结构厚板焊接残余应力实验研究与有限元分析 [D]. 武汉: 武汉理工大学, 2006)
[6] An J W. The effect of welding residual stress to the performance of resistance to earthquake of beam-column connection [D]. Tianjin: Tianjin University, 2005
[6] (安俊伟. 焊接残余应力对梁柱节点抗震性能的影响 [D]. 天津: 天津大学, 2005)
[7] Shi G, Shi Y J, Ban H Y. High Strength Steel Structures [M]. Beijing: China Construction Industry Press, 2014: 30
[7] (施 刚, 石永久, 班慧勇. 高强度钢材钢结构 [M]. 北京: 中国建筑工业出版社, 2014: 30)
[8] Jia L. Finite element analysis on residual stress of welding assembly for I-beam and end-plate [D]. Ji'nan: Shandong University, 2013
[8] (贾 栗. 工字钢-端板组焊结构焊接残余应力有限元分析 [D]. 济南: 山东大学, 2013)
[9] Li X Y, Wu C S, Li W S. Study on the progress of welding science and technology in China [J]. Chin. J. Mech. Eng., 2012, 48(6): 19
[9] (李晓延, 武传松, 李午申. 中国焊接制造领域学科发展研究 [J]. 机械工程学报, 2012, 48(6): 19)
[10] Deng D A, Ren S D, Li S, et al. Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment [J]. Acta Metall. Sin., 2017, 53: 1532
[10] (邓德安, 任森栋, 李 索等. 多重热循环和约束条件对P92钢焊接残余应力的影响 [J]. 金属学报, 2017, 53: 1532)
[11] Fang H Y. Welding Structures [M]. 2nd Ed., Beijing: Machinery Industry Press, 2017: 109
[11] (方洪渊. 焊接结构学 [M]. 第2版,北京: 机械工业出版社, 2017: 109)
[12] Zhao R. Study of welding residual stress's numerical simulation and relieving [D]. Dalian: Dalian University of Technology, 2006
[12] (赵 锐. 焊接残余应力的数值模拟及控制消除研究 [D]. 大连: 大连理工大学, 2006)
[13] Zhao X C, Zhang Y D, Zhang H W, et al. Simulation of vibration stress relief after welding based on FEM [J]. Acta Metall. Sin. (Engl. Lett.), 2008, 21: 289
[14] Yu L. Welding residual stress analysis and optimization of post weld heat treatment of narrow gap submerged arc welding [D]. Shanghai: East China University of Science and Technology, 2017
[14] (余 磊. 窄间隙埋弧焊焊接残余应力及其热处理消除的模拟和优化研究 [D]. 上海: 华东理工大学, 2017)
[15] Venkata K A, Kumar S, Dey H C, et al. Study on the effect of post weld heat treatment parameters on the relaxation of welding residual stresses in electron beam welded P91 steel plates [J]. Procedia Eng., 2014, 86: 223
[16] Dong P S, Song S P, Zhang J M. Analysis of residual stress relief mechanisms in post-weld heat treatment [J]. Int. J. Press. Vessels Pip., 2014, 122: 6
[17] Deng D A, Ogawa K, Kiyoshima S, et al. Prediction of residual stresses in a dissimilar metal welded pipe with considering cladding, buttering and post weld heat treatment [J]. Comput. Mater. Sci., 2009, 47: 398
[18] Sun J M, Zhu J Y, Xia L Y, et al. Numerical simulation of welding residual stress and deformation induced by electro slag welding [J]. Trans. China Weld. Inst., 2016, 37(5): 23
[18] (孙加民, 朱家勇, 夏林印, 等. 电渣焊接头焊接残余应力与变形的数值模拟 [J]. 焊接学报, 2016, 37(5): 23)
[19] Deng D A, Kiyoshima S. Numerical simulation of welding residual stresses in a multi-pass butt-welded joint of austenitic stainless steel using variable length heat source [J]. Acta Metall. Sin., 2010, 46: 195
[19] (邓德安, 清岛祥一. 用可变长度热源模拟奥氏体不锈钢多层焊对接接头的焊接残余应力 [J]. 金属学报, 2010, 46: 195)
[20] Tan Z, Guo G W. Thermophysical Properties of Engineering Alloys [M]. Beijing: Metallurgical Industry Press, 1994: 42
[20] (谭 真, 郭广文. 工程合金热物性 [M]. 北京: 冶金工业出版社, 1994: 42)
[21] Yuan G L, Shu Q J, Huang Z H, et al. An experimental investigation of properties of Q345 steel pipe at elevated temperatures [J]. J. Constr. Steel Res., 2016, 118: 41
[22] Kasuya T, Ichikawa K, Fuji M. Derivation of carbon equivalent to assess hardenability of steel [J]. Sci. Technol. Weld. Join., 1998, 3(6): 317
[23] Deng D A, Kiyoshima S. Numerical simulation of welding temperature field, residual stress and deformation induced by electro slag welding [J]. Comput. Mater. Sci., 2012, 62: 23
[24] MARC. Analysis Research Corporation. Theory and user information. Palo Alto, 2007
[25] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metall. Trans., 1984, 15B: 299
[26] Deng D A, Zhang C H, Pu X W, et al. Influence of material model on prediction accuracy of welding residual stress in an austenitic stainless steel multi-pass butt-welded joint [J]. J. Mater. Eng. Perform., 2017, 26: 1494
[27] Fields B A, Fields R J. The prediction of elevated temperature deformation of structural steel under anisothermal conditions [R]. Gaithersburg: Department of Commerce National Institute of Standards and Technology, 1991
[28] Yan S H. Experimental study on creep behavior in steel at elevated temperature [D]. Chongqing: Chongqing University, 2015
[28] (闫守海. 钢材高温蠕变性能试验研究 [D]. 重庆: 重庆大学, 2015)
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[4] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[5] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[7] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[8] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[10] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[11] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[12] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[13] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[14] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[15] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.