Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 915-923    DOI: 10.11900/0412.1961.2015.00628
  论文 本期目录 | 过刊浏览 |
不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响*
高玉魁()
同济大学航空航天与力学学院, 上海 200092
INFLUENCE OF DIFFERENT SURFACE MODIFICA-TION TREATMENTS ON SURFACE INTEGRITY AND FATIGUE PERFORMANCE OF TC4 TITANIUM ALLOY
Yukui GAO()
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
引用本文:

高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响*[J]. 金属学报, 2016, 52(8): 915-923.
Yukui GAO. INFLUENCE OF DIFFERENT SURFACE MODIFICA-TION TREATMENTS ON SURFACE INTEGRITY AND FATIGUE PERFORMANCE OF TC4 TITANIUM ALLOY[J]. Acta Metall Sin, 2016, 52(8): 915-923.

全文: PDF(1313 KB)   HTML
  
摘要: 

对TC4钛合金进行了喷丸强化、激光冲击强化和低塑性抛光3种表面强化改性处理, 测定了不同表面改性处理下的表面粗糙度、显微硬度、残余应力及微观组织, 研究了不同表面改性处理下的旋转弯曲疲劳性能, 利用SEM观察分析了疲劳断口特征, 提出了表面强化改性机理和效果评价方法. 结果表明, 喷丸强化、激光冲击强化和低塑性抛光3种表面强化改性处理后, TC4钛合金的旋转弯曲疲劳寿命提高, 疲劳强度也大幅度提升, 而且疲劳裂纹位于表面强化层下的次表层; 对于未表面强化改性处理的TC4钛合金, 疲劳裂纹位于表面. 基于位错理论, 对次表层裂纹萌生抗力和疲劳强度进行了分析并给出了定量分析模型.

关键词 TC4钛合金喷丸强化激光冲击强化低塑性抛光表面完整性疲劳    
Abstract

TC4 titanium alloy is usually used to manufacture engine blades, blings or blisks and fatigue is the main failure of these components due to its high strength, good corrosion resistance and light weight. In engineering applications, three typical surface modification processes such as shot peening (SP), laser shock peening (LSP) and low plasticity burnishing (LPB) were employed to improve fatigue performance. In this work, SP, LSP and LSB were taken to enhance surface layer of TC4 titanium alloy. The surface integrity of specimens including surface roughness, microhardness, residual stresses and microstructure was investigated to obtain the effects of modification on surface layer by different methods. The rotating-bending fatigue performance was tested at room temperature and fatigue fracture surfaces were analyzed by SEM. Fatigue life was compared at the same stress 760 MPa with the reference machinced specimen. Fatigue strength was determined by stair method for 1×107 cyc. The results show that both the rotating-bending fatigue life and fatigue strength of TC4 titanium alloy are increased by these surface modification processes. The fatigue life prolonging factor (FLPF) for SPed specimens is 20.4, and FLPF for LSPed specimens and LPBed specimens is 89.6 and 99, respectively. Meanwhile, fatigue strength improvement percentage (FSIP) for SPed, LSPed and LPBed specimens is 36.3%, 37.8% and 38.8%, respectively. Moreover, the fatigue cracks initiate beneath surface enhanced layer for surface-modified specimens, while they are located at surfaces for un-surface-enhanced ones. Based on dislocation theory, the subsurface cracks initiation resistance and fatigue strength for surface-enhanced specimens were analysied. Finally, surface modification mechanisms were discussed and some quantitative analysis methods on surface modification effects were proposed. For surface-enhanced smooth specimens, the FSIP limit is 40% based on proposed analysis model and it is verified in this work by different surface layer enhancement processes (36.3% for SPed specimens, 37.8% for LSPed and 38.8% for LPBed specimens are near to 40%). Fatigue total life including initiation and propagation is a complex problem, and therefore it is difficult to give accurate life prediction and analysis, especially for small crack growth, although some invesitigations on total fatigue life can be roughly estimated based on Basquin relation for stress fatigue life or Coffin and Marson eqution for strain fatigue life which have not any physical meaning or any mechanism.

Key wordsTC4 titanium alloy    shot peening    laser shock peening    low plasticity burnishing    surface integrity    fatigue
收稿日期: 2015-12-07     
基金资助:* 国家自然科学基金项目11372226, 中央高校基本科研业务费项目13302380043, 航空科学基金项目2014ZE38008和同济大学英才计划项目1330219133资助
图1  旋转弯曲疲劳试样尺寸
图2  TC4钛合金微观组织的OM像
图3  机械加工试样和低塑性抛光不同次数试样表面形貌的SEM像
图4  TC4钛合金经机械加工和不同表面改性处理后的显微硬度分布
图5  TC4钛合金经机械加工和不同表面改性处理后的残余应力分布
Specimen Fatigue life range / cyc Mean life / cyc FLPF
Machined 2.614×104~6.182×104 4.582×104 0 (referenced specimen)
SP 9.137×105~1.024×106 9.804×105 20.4
LSP 4.001×106~5.220×106 4.150×106 89.6
LPB (Nt=7) 3.227×106~8.014×106 4.582×106 99.0
表1  TC4钛合金旋转弯曲试样在760 MPa应力下的疲劳寿命
Specimen Fatigue strength / MPa FSIP
Machined 490 0 (referenced specimen)
SP 668 36.3%
LSP 675 37.8%
LPB (Nt=7) 680 38.8%
表2  TC4钛合金的旋转弯曲疲劳强度
图6  TC4钛合金旋转弯曲疲劳断口
图7  表面和内部疲劳裂纹萌生的过程
[1] Joshi V A.Titanium Alloys—An Atlas of Structures and Fracture Fearures .New York: CRC Press, Taylor & Francis Group, 2006: 1
[2] Gao Y K.Surface Integrity Theory and Its Application Beijing: Chemical Industry Press, 2014: 1
[2] (高玉魁. 表面完整性理论与应用. 北京: 化学工业出版社, 2014: 1)
[3] Davim J P.Surface Integrity in Machining London: Springer, 2010: 1
[4] Gao Y K, Li X B, Yang Q X, Yao M.Mater Lett, 2007; 61: 466
[5] Gao Y K, Yin Y F, Li X B.Met Heat Treat, 2002; 27(8): 30
[5] (高玉魁, 殷源发, 李向斌. 金属热处理, 2002; 27(8): 30)
[6] Gao Y K, Liu T Q, Yin Y F . Li X B.J Aeronaut Mater, 2002; 22(2): 21
[6] (高玉魁, 刘天琦, 殷源发, 李向斌. 航空材料学报, 2002; 22(2): 21)
[7] Gao Y K.Chin J Nonferrous Met, 2004; 14: 60
[7] (高玉魁. 中国有色金属学报, 2004; 14: 60)
[8] Gao Y K, Yao M, Li J K.Metall Mater Trans, 2002; 33A: 1778
[9] Gao Y K, Wu X R.Acta Mater, 2011; 59: 3744
[10] Zhang X C, Zhang Y K, Lu J Z, Xuan F Z, Wang Z D, Tu S T.Mater Sci Eng, 2010; A527: 3411
[11] Gao Y K.Mater Sci Eng, 2011; A528: 3823
[12] Altenberger I, Nalla R K, Sano Y, Wagner L, Ritchie R O.Int J Fatigue, 2012; 44: 292
[13] Nalla R K, Altenberger U N, Liu G Y, Sxholtes B, Ritchie R O.Mater Sci Eng, 2003; A355: 216
[14] Seemikeri C Y, Brahmankar P K, Mahagaonkar S B.Tribology Int, 2008; 41: 724
[15] Prevey P S, Cammett J T.Int J Fatigue, 2004; 26: 975
[16] Aviles R, Albizuri J, Rodriguez A, Lacalle L N.Int J Fatigue, 2013; 55: 230
[17] Revankar G D, Shetty R, Rao S S, Gaitonde V N.Measurement, 2014; 58: 256
[18] Chen G Q, Jiao Y, Tian T Y, Zhang X H, Li Z Q, Zhou W L.Trans Nonferrous Met Soc China, 2014; 24: 690
[19] Li K, Fu X S, Li R D, Gai P T, Li Z Q, Zhou W L, Chen G Q.Int J Fatigue, 2016; 85: 65
[20] Li K, Fu X S, Li R D, Gai P T, Zhou W L, Li Z Q.Mater Des, 2015; 86: 761
[21] Youtsos A G.Residual Stress and its Effects on Fatigue and Fracture London: Springer, 2006: 1
[22] Schulze V.Modern Mechanical Surface Treatment. Weinheim: Wiley-VCH, 2006: 1
[23] Gao Y K, Jiang C Y.Aeronaut Manuf Technol, 2016; 4: 16
[24] Gao Y K, Yao M, Shao P G, Zhao Y H.J Mater Eng Perform, 2003; 12: 507
[25] Gao Y K, Lu F, Yin Y F, Yao M.Mater Sci Technol, 2003; 19: 372
[26] Gao Y K, Yao M, Yang Q X, Zhao Y H, Lu F, Wu X R..J Mater Eng Perform, 2005; 14: 591
[27] Gao Y K.PhD Dissertation, Beijing Institute of Aeronautical Materials, 2008
[27] (高玉魁. 北京航空材料研究院博士学位论文, 2008)
[28] Levitin V, Loskutov S.Strained Metallic Surfaces—Theory, Nanostructuring and Fatigue Strength. Weinheim: Wiley-VCH, 2009: 1
[29] Schijve J.Fatigue of Structure and Materials. London: Springer, 2008: 1
[30] Musinski W D, McDowell D L.Acta Mater, 2016; 112: 20
[31] Castelluccio G M,McDowell D L .Int J Fatigue, 2016; 82: 521
[32] Walker K F, Wang C H, Newman J C.Int J Fatigue, 2016; 82: 256
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[11] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[13] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[14] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[15] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.