Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 791-798    
  本期目录 | 过刊浏览 |
纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究
崔跃,席文君(),王星,李树杰
Al2O3 NANOPARTICLE AND NiAl REINFORCED Fe-BASED ODS ALLOYS SYNTHESIZED BY THERMITE REACTION
Yue CUI,Wenjun XI(),Xing WANG,Shujie LI
School of Materials Science and Engineering, Beihang University, Beijing 100191
引用本文:

崔跃,席文君,王星,李树杰. 纳米Al2O3和NiAl共同强化的铁基ODS合金的铝热合成研究[J]. 金属学报, 2015, 51(7): 791-798.
Yue CUI, Wenjun XI, Xing WANG, Shujie LI. Al2O3 NANOPARTICLE AND NiAl REINFORCED Fe-BASED ODS ALLOYS SYNTHESIZED BY THERMITE REACTION[J]. Acta Metall Sin, 2015, 51(7): 791-798.

全文: PDF(12518 KB)   HTML
摘要: 

采用铝热合成法制备了Al2O3和NiAl共同增强的铁基氧化物弥散强化(oxide dispersion strengthened, ODS)合金, 研究了Al2O3纳米粒子的大小、分布和运动行为. 研究表明, 添加TiO2凝胶可以形成大小约为10 nm的Al2O3纳米粒子, 这些Al2O3纳米粒子由于界面能的作用全部与NiAl相结合. 当添加TiO2凝胶的质量分数达到1.24%时, 合金的拉伸强度达到最大值849 MPa, 并保持13%的延伸率.

关键词 纳米Al2O3界面能拉伸性能氧化物弥散强化合金    
Abstract

Fe-based oxide dispersion strengthened (ODS) alloys are widely used in advanced aircrafts and gas turbine engines due to their good high temperature strength, creep properties and hot-corrosion resistance. Traditionally, ODS alloys are prepared by internal oxidation and mechanical alloying. However, internal oxidation cannot be applied to multi-component alloys. It is difficult to guarantee other elements from being oxidized. On the other hand, the use of mechanical alloying will bring in impurities in the process of ball milling which will compromise the purification of alloy particles surface. In this work, TiO2 xerogel prepared by using sol-gel method was added to the thermite powder mixture and the mixture was then ignited by using a tungsten filament. It solidified rapidly after the molten metal flowed into the bottom of the graphite mold because of the gravity field. It was found that Al2O3 and NiAl were formed in situ in the molten metal. Therefore, Al2O3 nanoparticles and NiAl reinforced Fe-based ODS alloy could be prepared by using this method. The phase composition and morphology of the Fe-based ODS alloy were investigated by using the combination of OM, SEM, TEM, XRD. The size of Al2O3 nanoparticles and the influence of Brownian motion and interface energy on the distribution and movement of the Al2O3 nanoparticles were investigated. The mechanical properties of the Fe-based ODS alloy with different contents of TiO2 xerogel was investigated by using mechanical properties testing machine. The experimental results show that the Fe-based ODS alloy consists of ferrite a-FeNiCrAl, NiAl, and Al2O3 nanoparticles. The diameter of Al2O3 nanoparticles is approximately 10 nm. Both Brownian motion and interface energy affect the motion of Al2O3 nanoparticles during the solidification, however, interface energy is dominant. The interface energy between Al2O3 nanoparticles and NiAl is lower than that of Al2O3 and ferrite a-FeNiCrAl. Therefore, nearly all the Al2O3 nanoparticles are connected with the NiAl phase. Higher TiO2 xerogel additions increase the tensile strengthen and elongation of the Fe-based ODS alloy. When the content of TiO2 xerogel is 1.24%, the tensile strength of the Fe-based ODS alloy attains 849 MPa and the elongation is 13%. Continuing adding the TiO2 xerogel results in the release of large quantities of gas which produces holes in the Fe-based ODS alloy and these holes decrease the mechanical properties of the alloy.

Key wordsAl2O3 nanoparticle    interfacial energy    tensile property    oxide dispersion strengthened alloy
    
基金资助:国家自然科学基金资助项目51472015
Content of TiO2 / % Al NiO Fe2O3 CrO3 Cr2O3
0 29.03 12.77 34.38 14.62 9.19
0.87 28.78 12.66 34.08 14.50 9.11
1.24 28.69 12.63 33.96 14.44 9.08
1.98 28.45 12.51 33.70 14.33 9.03
表1  实验用铝热剂的化学成分
图1  铝热反应装置示意图
图2  拉伸试样示意图
图3  添加不同TiO2凝胶含量的铝热合成铁基氧化物弥散强化(ODS)合金的OM像
图4  TiO2凝胶添加量为0.87%时铝热合成铁基ODS合金的XRD谱
图5  添加不同TiO2凝胶含量的铝热合成铁基ODS合金的SEM像
图6  TiO2凝胶添加量为0.87%时铝热合成铁基 ODS合金的TEM像和选区电子衍射谱
图7  不同TiO2凝胶含量铝热合成铁基ODS合金的应力-应变曲线
图8  TiO2凝胶含量对铝热合成铁基ODS合金拉伸强度和断后伸长率的影响
图9  添加不同TiO2凝胶含量的铝热合成铁基ODS合金的拉伸断口的SEM像
[1] Pickering F B. Int Metall Rev, 1976; 21: 227
[2] Taillard R, Pineau A. Mater Sci Eng, 1982; A56: 209
[3] Zhu S M, Tjong S C, Lai J K L. Acta Mater, 1997; 46: 2969
[4] Kimenkov M, Lindau R, Moslang A. J Nucl Mater, 2009; 386-388: 557
[5] Benjamin J S, Volin T E. Metall Trans, 1974; 5: 1929
[6] Gilman P S, Benjamin J S. Annu Rev Mater Sci, 1983; 13: 279
[7] Suryanarayana C. Mater Manuf Process, 2007; 22: 1
[8] Xi W J, Peng R L, Wu W, Li N, Wang S B, Johansson S. J Mater Sci, 2012; 47: 3585
[9] Xi W J, Yin S, Lai H Y. J Mater Sci, 2000; 35: 45
[10] Xi W J, Yin S, Lai H Y. J Mater Process Technol, 2003; 137: 1
[11] Xi W J, Zhou H P, Ma C L, Duan H P, Zhang T. J Mater Sci, 2007; 42: 2489
[12] Zhang K Q, Zhang K F. Met Technol, 2006; 8: 870
[13] Wu W, Xi W J. Inorg Chem, 2011; 27: 659
[14] Shui M, Song Y, Wang Q, Ren Y. Curr Appl Phys, 2010; 10: 1360
[15] Baumli P, Sytchev J, Kaptay G. J Mater Sci, 2010; 45: 5177
[16] Gregory S R. J Mater Sci, 2011; 46: 5881
[17] Triantafyllou G, Angelopoulos G N, Nikolopoulos P. J Mater Sci, 2010; 45: 2015
[18] Nikolopoulos P, Agathopoulos S, Tsoga A. J Mater Sci, 1994; 29: 4393
[19] Sharan A, Cramb A W. Metall Mater Trans, 1997; 28B: 465
[20] Silvain J F, Bihr J C, Douin J. Composites, 1998; 29A: 1175
[21] K?rber C, Rau G, Cosman M D, Cravalho E G. J Cryst Growth, 1985; 72: 649
[22] Uhlmann D R, Chalmers B, Jackson K A. J Appl Phys, 1964; 35: 2986
[23] Sen S, Dhindaw B K, Stefanescu D M, Catalina A, Curreri P A. J Crystal Growth, 1997; 173: 574
[24] Kaptay G. Mater Sci Forum, 1996; 467: 215
[25] Washizu T, Nagasaka T, Hino M. Mater Trans, 2001; 42: 471
[26] Chen Z Q,Dai M G. Colloidal Chemistry. Beijing: Higher Education Press, 1985: 38 (陈宗淇,戴闽光. 胶体化学. 北京: 高等教育出版社, 1985: 38)
[27] Yin S. Combustion Synthesis. Beijing: Metallurgial Industry Press, 2004: 32 (殷 声. 燃烧合成. 北京: 冶金工业出版社, 2004: 32)
[1] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[2] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[3] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[4] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[5] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[6] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[7] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[8] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[9] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[10] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[11] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[12] 坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
[13] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[14] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[15] 李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.