Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 216-222    DOI: 10.11900/0412.1961.2014.00283
  本期目录 | 过刊浏览 |
磨球级配对MA-SPS原位合成Al13Fe4/Al复合材料的组织结构及力学性能的优化*
胡娜(), 薛丽红(), 顾健, 李和平, 严有为
华中科技大学材料成形与模具技术国家重点实验室, 武汉 430074
OPTIMIZATION OF GRADING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Al13Fe4/Al COM- POSITES IN SITU SYNTHESIZED BY MECHANICAL ALLOYING AND SPARK PLASMA SINTERING
HU Na(), XUE Lihong(), GU Jian, LI Heping, YAN Youwei
State Key Laboratory of Material Processing and Die &Mold Technology, Huazhong University of Science and Technology, Wuhan 430074
引用本文:

胡娜, 薛丽红, 顾健, 李和平, 严有为. 磨球级配对MA-SPS原位合成Al13Fe4/Al复合材料的组织结构及力学性能的优化*[J]. 金属学报, 2015, 51(2): 216-222.
Na HU, Lihong XUE, Jian GU, Heping LI, Youwei YAN. OPTIMIZATION OF GRADING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Al13Fe4/Al COM- POSITES IN SITU SYNTHESIZED BY MECHANICAL ALLOYING AND SPARK PLASMA SINTERING[J]. Acta Metall Sin, 2015, 51(2): 216-222.

全文: PDF(4052 KB)   HTML
摘要: 

采用机械合金化-放电等离子体烧结(MA-SPS)技术原位合成近全致密的Al13Fe4/Al复合材料. 在MA过程中采用磨球级配对材料的组织结构和性能进行了优化. 利用XRD, SEM, TEM, 显微硬度计和力学性能测试系统等手段对粉末及烧结试样的组织结构和性能进行了分析表征. 结果表明, 相同MA时间下, 采用磨球级配可有效提高球磨效果, 其粉末粒径分布更均匀, 固溶度也得到很大的提高. SPS烧结后, 复合材料的组织由α-Al和金属间化合物Al13Fe4 2相构成. 金属间化合物Al13Fe4相的形态分为大颗粒(1~2 mm)、超细颗粒(0.1~1.0 mm)和纳米颗粒(20 nm) 3种, 其中大颗粒和超细颗粒Al13Fe4由未固溶的Fe与Al直接反应原位生成, 纳米颗粒Al13Fe4是Fe从过饱和Al(Fe)固溶体中析出生成. 采用磨球级配处理的Al-10Fe合金含有更多大颗粒α-Al和超细颗粒Al13Fe4, 因此它具有更优的综合力学性能, 显微硬度为227 HV, 抗压强度为845.8 MPa, 最大塑性变形量为13.6 %。

关键词 机械合金化放电等离子烧结原位合成Al13Fe4/Al复合材料级配    
Abstract

Al-Fe alloys are widely applied in automobile, aerospace, military industry and other fields owing to their high specific strength, high specific stiffness and good stability of the microstructure originating from the low diffusivity of Fe in Al. However, conventional casting method leads to inferior mechanical properties of Al-Fe alloys due to the coarse grain microstructure, which cannot meet application requirements. In this work, fully densed Al13Fe4/Al composites were fabricated by combination of mechanical alloying and spark plasma sintering (MA-SPS) approaches. Effect of gradation of grinding balls on microstructure and properties of composites was investigated by means of XRD, SEM, TEM, hardness and compressive test. The results showed that the size of powders became more uniform by ball gradation in MA treatment, and solid solubility was greatly enhanded as well. Furthermore, the Al-Fe powder after MA using a single grinding ball size showed the microstructure of tiny white Fe particles on the surface of each particle, while no white Fe particles were observed for the one with ball gradation, which confirmed that ball gradation was more beneficial to the mixture and solid solution of Al and Fe, resulting in more homogeneously distributed powders with smaller particle sizes of 10 μm. The composites after SPS contained α-Al phase and intermetallic compound Al13Fe4. Three types of Al13Fe4 were observed: large particles (1~2 μm), ultrafine particles (0.1~1.0 μm) and nano-particles (about 20 nm). The large particles and ultrafine Al13Fe4 formed by the reaction between undissolved Fe particles and the Al melt while nano-particles of Al13Fe4 originated from the precipitation of supersaturated Al(Fe) solid solutions. The sintered sample with ball gradation after SPS showed optimized microstructure with coarser α-Al particles and ultrafine Al13Fe4 particles, resulting in good comprehensive properties with 227 HV in microhardness, 845.8 MPa in compressive strength and 13.6% in plastic deformation. The combination of large quantities of coarse α-Al particles and ultrafine Al13Fe4 particles were considered as the reason for high strength and high toughness of Al-Fe alloy。

Key wordsmechanical alloying    spark plasma sintering    in situ synthesis    Al13Fe4/Al composite    gradation
收稿日期: 2014-05-27     
ZTFLH:  TG146.2  
作者简介: null

作者简介: 胡娜, 女, 1990年生, 硕士生

图1  未经放电等离子烧结(SPS) Al-10Fe粉末的EBSD像
图2  未经SPS烧结Al-10Fe粉末的XRD谱
图3  未经SPS烧结Al-10Fe粉末的晶粒尺寸、晶格应变、晶格常数和固溶度的变化
图4  经SPS烧结后Al-10Fe试样的XRD谱
图5  经SPS烧结后Al-10Fe粉末的EBSD像
Sample Phase Atomic fraction of Fe / %
A B
S1 α-Al+ Al13Fe4 0.17 22.18
S2 α-Al+ Al13Fe4 1.85 23.94
表1  经SPS烧结后Al-10Fe粉末的EDS结果
图6  经SPS烧结后Al-10Fe粉末TEM像和SAED谱
图7  经SPS烧结后Al-10Fe粉末的压缩应力-应变曲线
Sample Vickers hardness
HV
Compressive strength
smax / MPa
Plastic deformation
e / %
S1 297 1130.9 -
S2 227 845.8 13.6
表2  经SPS烧结后Al-10Fe粉末的力学性能
[1] Krasnowski M, Kulik T. Intermetallics, 2010; 18: 47
[2] Sasaki T T, Mukai T, Hono K. Scr Mater, 2007; 57: 189
[3] Sasaki T T, Ohkubo T, Hono K. Acta Mater, 2009; 57: 3529
[4] Gilman P S, Das S K. Met Powder Rep, 1989; 44: 616
[5] Koch C C. Mater Sci Eng, 1998; A244: 39
[6] Huang B, Ishihara K N, Shingu P H. Mater Sci Eng, 1997; A231: 72
[7] Huang B, Ishihara K N, Shingu P H. Trans Nonferrous Met Soc, 1999; 9: 747
[8] Zou Y, Sajib S, Kusabirakib K. Mater Res Bull, 2002; 37: 123
[9] Krasnowski M, Kulik T. Mater Chem Phys, 2009; 116: 631
[10] Stolyarov V V, Soshnikova E P, Brodova I G. Phys Met Metall, 2002; 93: 567
[11] Lee I S, Kao P W, Ho N J. Intermetallics, 2008; 16: 1104
[12] Nayaka S S, Murty B S, Pabi S K. Bull Mater Sci, 2008; 31: 449
[13] Mukai T, Suresh S, Kita K. Acta Mater, 2003; 51: 4197
[14] Sasaki, Kita K, Nagahora J. Mater Trans, 2001; 42: 1561
[15] Kim Y W, Griffith W M. Dispersion Strengthened Aluminum Alloys. Warrendale, PA: TMS, 1988: 157
[16] Massalski T B, Okamoto H. Binary Alloy Phase Diagrams. Materials Park, OH: AMS, 1996: 147
[17] Yue M, Zhang J X, Liu X B, Xiao Y F. J Magn Magn Mater, 2004; 2: 271
[18] Xie G, Ohashi, O, Yoshida T, Song M, Mitsuishi K, Yasuda H, Furuya K, Noda T. Mater Trans, 2001; 42: 1846
[19] Olevsky E, Froyen L. Scr Mater, 2006; 55: 1175
[20] Kim C K, Lee H S, Shin S Y, Lewis D B. J Alloys Compd, 2008; 453: 1
[21] Gu J, Gu S S, Xue L H, Wu S S, Yan Y W. Mater Sci Eng, 2012; A558: 684
[22] Gu J, Gu S S, Xue L H, Wu S S, Yan Y W. Acta Metall Sin, 2013; 49: 435
[22] (顾 健, 古飒飒, 薛丽红, 吴树森, 严有为. 金属学报, 2013; 49: 435)
[23] Guo J L, Sheng Y N. J Inn Mong Norm Univ, 2009; 38: 357
[23] (郭金玲, 沈岳年. 内蒙古师范大学学报, 2009; 38: 357)
[24] Pearson W B. A Handbook of Lattice Spacings and Structures of Metals and Alloys. Berlin: Pergamon, 1967: 1
[25] Murray J L. Mater Res Soc Symp Proc, 1983; 19: 249
[26] Yan Y W, Chen Z, Fu Z Y. Acta Mater Compos Sin, 2005; 22(2): 6
[26] (严有为, 陈 哲, 傅正义. 复合材料学报, 2005; 22(2): 6)
[27] Villars P, Calvert L D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases. 2nd Ed., Materials Park, OH: AMS, 1991: 1
[1] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[2] 刘泽, 宁汉维, 林彰乾, 王东君. SPS烧结参数对NiAl-28Cr-5.5Mo-0.5Zr合金微观组织及室温力学性能的影响[J]. 金属学报, 2021, 57(12): 1579-1587.
[3] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[4] 康利梅,杨超,李元元. 半固态烧结法制备高强韧新型双尺度结构钛合金[J]. 金属学报, 2017, 53(4): 440-446.
[5] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
[6] 朱敏, 鲁忠臣, 胡仁宗, 欧阳柳章. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用*[J]. 金属学报, 2016, 52(10): 1239-1248.
[7] 潘昆明,张来启,魏世忠,李继文,李豪,林均品. Mo-Si-B三元系中T2相合金的制备工艺研究*[J]. 金属学报, 2015, 51(11): 1377-1383.
[8] 顾健,古飒飒,薛丽红,吴树森,严有为. 机械合金化和放电等离子烧结制备Al-Fe合金的微观组织演变[J]. 金属学报, 2013, 29(4): 435-442.
[9] 王曼,周张健,闫志刚,于鹏飞,孙红英. ODS-316奥氏体钢显微结构及弥散相的TEM研究[J]. 金属学报, 2013, 49(2): 153-158.
[10] 张来启,潘昆明,段立辉,林均品. 原位合成MoSi2-SiC复合材料在500℃的氧化行为[J]. 金属学报, 2013, 49(11): 1303-1310.
[11] 吕铮,卢晨阳,张守辉,谢锐,刘春明. 纳米结构14Cr-ODS铁素体钢的制备与微观结构[J]. 金属学报, 2012, 48(6): 649-653.
[12] 张晓伟 刘洪喜 蒋业华 王传琦. 激光原位合成TiN/Ti3Al基复合涂层[J]. 金属学报, 2011, 47(8): 1086-1093.
[13] 谈军 周张健 刘亚勤 屈丹丹 钟铭 葛昌纯. 碳纳米管对W显微组织结构及其性能的影响[J]. 金属学报, 2011, 47(12): 1555-1560.
[14] 赵世贤 宋晓艳 王明胜 魏崇斌 张久兴 刘雪梅. WC/Co粉体粒径匹配与放电等离子烧结致密化[J]. 金属学报, 2009, 45(4): 497-502.
[15] 邓小霞; 程宏辉; 李慎兰; 吕曼祺; 陈德敏; 杨柯 . 吸、放氢循环对V及V0.9Cr0.1合金储氢性能的影响[J]. 金属学报, 2007, 43(9): 977-982 .