Please wait a minute...
金属学报  2013, Vol. 49 Issue (2): 153-158    DOI: 10.3724/SP.J.1037.2012.00466
  论文 本期目录 | 过刊浏览 |
ODS-316奥氏体钢显微结构及弥散相的TEM研究
王曼1),周张健1),闫志刚2),于鹏飞2),孙红英1)
1) 北京科技大学材料科学与工程学院, 北京 100083
2) 燕山大学亚稳材料制备技术与科学国家重点实验室, 秦皇岛 066004
TEM CHARACTERIZATION OF DISPERSOIDS AND MICROSTRUCTURE OF ODS-316 AUSTENITIC STEEL
WANG Man 1), ZHOU Zhangjian 1), YAN Zhigang2), YU Pengfei2), SUN Hongying1)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) State Key Laboratory for Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
全文: PDF(3375 KB)  
摘要: 

采用机械合金化和热等静压方法制备了ODS-316奥氏体钢(316L+0.35%Y2O3+0.3%Ti, 质量分数). 由于应变诱导发生相变,机械合金化后的粉末存在α(FeCr)和γ (Fe, Ni)两相. 热等静压后的ODS钢基本为奥氏体单相, 这是由于在致密化过程中消除了应变. 通过对块体样品进行TEM观察和电子衍射谱标定, 观察到3类弥散颗粒: 立方晶系的Y2Ti2O7和TiN及正交晶系的Y2TiO5颗粒, 其中富Y, Ti和O的弥散粒子分布较多. ODS-316奥氏体钢的抗拉强度达到726 MPa, 较普通316不锈钢有显著提高.

关键词 机械合金化ODS奥氏体钢弥散颗粒    
Abstract

Super-critical water-cooled reactor (SCWR) has been selected to be one of the most potential advanced nuclear reactors due to its simplification and high efficiency. Oxide dispersion strengthened (ODS) austenitic steels are promising candidate materials for SCWR, which combine the advantages of both austenitic stainless steels and ODS steels. In this work, ODS-316 austenitic steel (316L+0.35%Y2O3+0.3%Ti, mass fraction) was fabricated by the process of mechanical alloying (MA) and hot isostatic pressing (HIP). The microstructural evolution after milling and hipping were studied by XRD. Morphologies and electron diffraction patterns of dispersed particles were characterized by TEM. Tensile properties of ODS austenitic steel were measured at room temperature. It was found that there were two phases of α (FeCr) and γ (Fe, Ni) in the powders after mechanical alloying, which was resulted from strain induced transformation. ODS-316 austenitic steel was single austenitic phase, since the strain disappeared during the consolidation of HIP. According to the observation and characterization of TEM, three kinds of dispersoids were found in samples: cubic Y2Ti2O7 and TiN and orthorhombic Y2TiO5. However, most of the dispersoids were round particles that enriched in Y, Ti and O. The tensile strength of ODS-316 austenitic steel was improved significantly, and its UTS reached 726 MPa. 

Key wordsmechanical alloying    ODS austenitic steel    dispersed particle
收稿日期: 2012-08-04     
基金资助:

国家重点基础研究发展计划资助项目2007CB209801

通讯作者: 周张健     E-mail: zhouzhj@mater.ustb.edu.cn
作者简介: 王曼, 女, 1987年生, 硕士生

引用本文:

王曼,周张健,闫志刚,于鹏飞,孙红英. ODS-316奥氏体钢显微结构及弥散相的TEM研究[J]. 金属学报, 2013, 49(2): 153-158.
WANG Man, ZHOU Zhangjian, YAN Zhigang, YU Pengfei, SUN Hongying. TEM CHARACTERIZATION OF DISPERSOIDS AND MICROSTRUCTURE OF ODS-316 AUSTENITIC STEEL. Acta Metall Sin, 2013, 49(2): 153-158.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00466      或      https://www.ams.org.cn/CN/Y2013/V49/I2/153

[1] Yao H. China Nucl Ind, 2008; 4: 24


(姚焕. 中国核工业, 2008; 4: 24)

[2] Murty K L, Charit I. J Nucl Mater, 2008; 383: 189

[3] Karak S K, Chudoba T, Witczak Z, Lojkowski W, Manna I. Mater Sci Eng, 2011; A7475: 7483

[4] Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X, Pister C. J Nucl Mater, 2007; 176: 201

[5] Klimiankou M, Lindau R, Moslang A. J Nucl Mater, 2007; 367: 173

[6] Kasada R, Toda N, Yutani K, Cho H S, Kishimoto H, Kimura A. J Nucl Mater, 2007; 367: 222

[7] Klueh R L. Int Mater Rev, 2005; 50: 287

[8] Klueh R L, Shingledecker J P, Swindeman R W, Hoelzer D T. J Nucl Mater, 2005; 341: 103

[9] Ukai S, Fujiwara M. J Nucl Mater, 2002; 307: 749

[10] Alinger M J, Odette G R. J Nucl Mater, 2004; 329: 382

[11] Oka H, Watanabe M, Kinoshita H, Shibayama T, Hashimoto N, Ohnuki S, Yamashita S, Ohtsuka S. J Nucl Mater, 2011; 147: 279

[12] Ortega Y, Monge M A, de Castro V, Munoz A, Leguey T, Pareja R. J Nucl Mater, 2009; 386: 462

[13] Li M, Zhou Z J, Liao L, Xu Y L, Ge C C. Mater Rev, 2012; 24: 94

(李明, 周张健, 廖璐, 许迎利, 葛昌纯. 材料导报, 2012; 24: 94)

[14] Yang P, Fu Y Y, Cui F E, Sun Z Q. Acta Metall Sin, 2001; 37: 592

(杨平, 傅云义, 崔凤娥, 孙祖庆. 金属学报, 2001; 37: 592)

[15] Miller M K, Kenik E A, Russell K F, Heatherly L, Hoelzer D T, Maziasz P J. Mater Sci Eng, 2003; A353: 140

[16] Miller M K, Hoelzer D T, Kenik E A, Russell K F. J Nucl Mater, 2004; 329: 338

[17] Miller M K, Russell K F, Hoelzer D T. J Nucl Mater, 2006; 351: 261

[18] Sakasegawa H, Chaffron L, Legendre F, Boulanger L, Cozzika T, Brocq M, Carlan Y. J Nucl Mater, 2009; 384: 115

[19] Sakasegawa H, Legendre F, Boulanger L, Brocq M, Chaffron L, Cozzika T, Malaplate J, Henry J. J Nucl Mater, 2011; 417: 229

[20] Klimiankou M, Lindau R, Moslang A. J Nucl Mater, 2004; 329: 347

[21] Phaniraj M P, Kim D I, Shim J H, Cho Y W. Acta Mater, 2009; 57: 1856

[22] Kim T K, Bae C S, Kim D H, Jang J S, Kim S H, Lee C B, Hahn D. Nucl Eng Technol, 2008; 40: 305

[23] Barin I, Knacke O. Thermochemical Properties of Inorganic Substances. Berlin, Heidebrg,New York: Springer-Verlag, 1973: 749

[24] Zhang S T. Handbook of Iron and Steel. Beijing: China Standard Press, 2001: 74

(张少棠主编. 钢铁材料手册. 北京: 中国标准出版社, 2001: 74)

[25] Wang M, Zhou Z J, Sun H Y, Hu H L, Li S F. Mater Sci Eng, 2013; A287: 292

 

 
[1] 朱敏, 鲁忠臣, 胡仁宗, 欧阳柳章. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用*[J]. 金属学报, 2016, 52(10): 1239-1248.
[2] 胡娜, 薛丽红, 顾健, 李和平, 严有为. 磨球级配对MA-SPS原位合成Al13Fe4/Al复合材料的组织结构及力学性能的优化*[J]. 金属学报, 2015, 51(2): 216-222.
[3] 顾健,古飒飒,薛丽红,吴树森,严有为. 机械合金化和放电等离子烧结制备Al-Fe合金的微观组织演变[J]. 金属学报, 2013, 29(4): 435-442.
[4] 吕铮,卢晨阳,张守辉,谢锐,刘春明. 纳米结构14Cr-ODS铁素体钢的制备与微观结构[J]. 金属学报, 2012, 48(6): 649-653.
[5] 邓小霞; 程宏辉; 李慎兰; 吕曼祺; 陈德敏; 杨柯 . 吸、放氢循环对V及V0.9Cr0.1合金储氢性能的影响[J]. 金属学报, 2007, 43(9): 977-982 .
[6] 张来昌; 沈智奇; 徐坚 . Sn替代Si和B对Ti50Ni22Cu18Al4Si4B2合金机械研磨非晶化的促进作用[J]. 金属学报, 2004, 40(9): 981-986 .
[7] 张晓强; 徐; 坚 . 机械研磨形成W颗/La55Al25Cu10Ni5Co5金属玻璃基复合材料[J]. 金属学报, 2004, 40(6): 647-.
[8] 张来昌; 沈智奇; 徐坚 . (Ti, Zr, Hf)--(Cu, Ni, Ag)--Al}多组元合金体系的机械驱动非晶化[J]. 金属学报, 2004, 40(4): 421-428 .
[9] 付广艳; 宋尽霞; 牛焱 . 机械合金化Ag-3OCr合金在0.1 MPa纯氧气中的氯化[J]. 金属学报, 2003, 39(9): 995-998 .
[10] 王延玲; 徐坚; 杨锐 . 机械研磨Tix(Cu0.45Ni0.55)94-xSi4B2合金系的玻璃形成范围[J]. 金属学报, 2003, 39(4): 364-368 .
[11] 曾美琴; 张耀; 欧阳柳章; 罗堪昌; 朱敏 . 机械合金化制备的Al-Pb-Cu合金结构与摩擦性能[J]. 金属学报, 2002, 38(8): 814-818 .
[12] 张来昌; 徐坚 . 高能球磨形成具有明显玻璃转变的Ti50Cu20Ni24Si4B2非晶态合金[J]. 金属学报, 2002, 38(3): 299-302 .
[13] 柳林 . 氧对Mo-Si系机械合金化的影响[J]. 金属学报, 2001, 37(9): 1001-1004 .
[14] 杨福宝; 郭建亭; 周继扬 . 机械合金化合成NiAl/HfB2复合材料的组织与力学性能[J]. 金属学报, 2001, 37(5): 483-487 .
[15] 杨福宝; 郭建亭 . NiAl(Cr)系的机械合金化[J]. 金属学报, 2000, 36(8): 883-888 .