Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 435-442    DOI: 10.3724/SP.J.1037.2012.00647
  论文 本期目录 | 过刊浏览 |
机械合金化和放电等离子烧结制备Al-Fe合金的微观组织演变
顾健,古飒飒,薛丽红,吴树森,严有为
华中科技大学材料成形与模具技术国家重点实验室, 武汉 430074
MICROSTRUCTURE EVOLUTION OF Al-Fe ALLOYS PREPARED BY MECHANICAL ALLOYING AND SPARK PLASMA SINTERING
GU Jian, GU Sasa, XUE Lihong, WU Shusen, YAN Youwei
State Key Laboratory of Materials Processing and Die and Mould Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
全文: PDF(3707 KB)  
摘要: 

采用机械合金化 (MA) 和放电等离子烧结 (SPS) 工艺制备致密的块体Al-Fe合金. 微观结构分析表明, MA 0和10 h的粉末经过SPS后, 在Al基体上分布着Al/Al13Fe4/Al5Fe2/Fe层状结构的大颗粒铝铁金属间化合物相和细小的条状或点状的Al13Fe4金属间化合物相; MA 20 h的粉末经过SPS后只有单一的Al13Fe4相均匀弥散分布于Al基体上.对Al-Fe二元体系进行热力学和动力学分析, 在SPS过程中Al/Fe界面上的初生形核相为Al13Fe4, 但由于Al5Fe2Gibbs自由能比Al13Fe4, 大颗粒中心部分的Fe与接触的Al13Fe4能进一步发生反应,生成Al5Fe2的同时Fe颗粒自身尺寸相应减小, 这是大颗粒铝铁金属间化合物中Al/Al13Fe4/Al5Fe2/Fe层状结构形成的原因.

关键词 Al-Fe合金机械合金化放电等离子烧结微观组织    
Abstract

Al-Fe alloys have wide potential applications in automobile and aerospace industries due to their high specific strength, high specific stiffness, good stability of microstructure and excellent high temperature strength. However, a wide variety of metastable phases can be formed in Al-Fe binary system, such as Al(Fe) supersaturated solid solution, amorphous and intermetallic phase. In order to better understand the phase formation in Al-Fe alloys, a systematic investigation of microstructure evolution is necessary. In this work, bulk dense Al-5Fe alloys were fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The phases, microstructures and morphologies of MA powders and the corresponding sintered samples were characterized by XRD, SEM and EDS. Special attention was paid to the effects of different milling times on structural change of phases during MA-SPS process. The results showed that during the MA, the size of alloy powders increased with increasing milling time (0--10 h), and then decreased with further milling time (10--20 h). The (111)Al peaks in XRD spectra of MA powders shifted to higher angles with the increase of milling time, indicating the dissolution of Fe atoms into the Al crystal lattice. Homogeneous Al(Fe) solid solutions were obtained after MA for 20 h. Bulk samples sintered from MA powders of 0 and 10 h contained Al/Al13Fe4/Al5Fe2/Fe layer structure intermetallic phase and tiny Al13Fe4 phase in the Al matrix. However, bulk sample sintered from MA powders of 20 h contained only relatively small Al13Fe4 phase in the Al matrix. Based on thermodynamic analysis (effective heat of formation theory) and kinetic analysis (spherical shell model), the primary phase that formed on the interfacial layer of Al/Fe was Al13Fe4, and then Al5Fe2 can be formed by the reaction of residual Fe and Al13Fe4 for the lower Gibbs free energy of Al5Fe2 compared to that of Al13Fe4, leading to the formation of Al/Al13Fe4/Al5Fe2/Fe layer structure intermetallic phase. The absence of Al5Fe2 and Fe phases in sample sintered from MA powders of 20 h were attributed to the complete reaction between relatively small Fe particles and Al melt during SPS process.

Key wordsAl-Fe alloy    mechanical alloying    spark plasma sintering    microstructure
收稿日期: 2012-10-29     
基金资助:

国家重点基础研究发展计划项目2012CB619600, 国家自然科学基金项目51002054及中央高校基本科研业务费项目 2011TS014资助

通讯作者: 薛丽红     E-mail: xuelh@mail.hust.edu.cn
作者简介: 顾健, 男, 1987 年生, 硕士生

引用本文:

顾健,古飒飒,薛丽红,吴树森,严有为. 机械合金化和放电等离子烧结制备Al-Fe合金的微观组织演变[J]. 金属学报, 2013, 29(4): 435-442.
GU Jian, GU Sasa, XUE Lihong, WU Shusen, YAN Youwei. MICROSTRUCTURE EVOLUTION OF Al-Fe ALLOYS PREPARED BY MECHANICAL ALLOYING AND SPARK PLASMA SINTERING. Acta Metall Sin, 2013, 29(4): 435-442.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00647      或      https://www.ams.org.cn/CN/Y2013/V29/I4/435

[1] Krasnowski M, Kulik T. Intermetallics, 2010; 18: 47


[2] Deevi S C, Sikka V K, Liu C T. Prog Mater Sci, 1997; 42: 177

[3] Froes F H, Senkov O N, Baburaj E G. Mater Sci Eng, 2001; A301: 44

[4] Wang W H, Xiao K Q, Chu Z Q, Dong Y D. Acta Metall Sin, 1990; 26: 97

(汪卫华, 肖克勤, 储昭琴, 董远达. 金属学报, 1990; 26: 97)

[5] Huang B, Ishihara K N, Shingu P H. Mater Sci Eng, 1997; A231: 72

[6] Zou Y, Saji S, Kusabiraki K. Mater Res Bull, 2002; 37: 123

[7] Nayak S S, Wollgarten M, Banhart J, Pabi S K, Murty B S. Mater Sci Eng, 2010; A527: 2370

[8] Shamah A M, Ibrahim S, Hanna F F. J Alloys Compd, 2011; 509: 2198

[9] Wang L, Cong H R, Zhang J, Bian X, Li H, Qin J. Phys Lett, 2002; 301A: 477

[10] Nayak S S, Murty B S, Pabi S K. Bull Mater Sci, 2008; 31: 449

[11] Nayak S S, Chang H J, Kim D H, Pabi S K, Murty B S. Mater Sci Eng, 2011; A528: 5967

[12] Sasaki H, Kita K, Nagohora J, Inoue A. Mater Trans, 2001; 42: 1561

[13] Mukai T, Suresh S, Kita K, Sasaki H, Kobayashi N, Higashi K, Inoue A. Acta Mater, 2003; 51: 4197

[14] Senkov O N, Frees F H, Stolyarov V V, Va1iev R Z, Liu J. Acta Mater, 1998; 10: 691

[15] Stolyarov V V, Lapovok R, Brodova I G, Thomson P F. Mater Sci Eng, 2003; A357: 159

[16] Sasaki T T, Mukai T, Hono K. Scr Mater, 2007; 57: 189

[17] Sasaki T T, Ohkubo T, Hono K. Acta Mater, 2009; 57: 3529

[18] Suryanarayana C. Prog Mater Sci, 2001; 46: 1

[19] Hu Q D, Luo P, Yan Y W. J Alloys Compd, 2008; 459: 163

[20] Kattner U R. In: Massalski T B, ed., Binary Alloy Phase Diagrams, Materials Park,

Ohio: ASM International, 1990: 147

[21] Krasnowski M, Kulik T. Mater Chem Phys, 2009; 116: 631

[22] Lu Z, Lu C Y, Zhang S H, Xie R, Liu C M. Acta Metall Sin, 2012; 48: 649

(吕铮, 卢晨阳, 张守辉, 谢锐, 刘春明. 金属学报, 2012; 48: 649)

[23] Song X Y, Liu X M, Zhang J X. J Am Ceram Soc, 2006; 89: 494

[24] Liu X M, Song X Y, Zhang J X. Acta Metall Sin, 2006; 42: 757

(刘雪梅, 宋晓艳, 张久兴. 金属学报, 2006; 42: 757)

[25] Pretorius P, Vredenberg M, Saris F W, de Reus R. J Appl Phys, 1991; 70: 3636

[26] Jindal V, Srivastava V C, Das A, Ghosh R N. Mater Lett, 2006; 60: 1758

[27] Hibino A, Watababe R. J Jpn Inst Met, 1991; 55: 1256

(日比野敦,渡辺龍三.日本金属学会誌, 1991; 55: 1256)

[28] Eldridge J, Komarek K L. Trans Met Soc AIME, 1964; 230: 226

[29] Mizuno Y. Master Thesis, Tokyo Institute of Technology, 2001
[1] 康利梅,杨超,李元元. 半固态烧结法制备高强韧新型双尺度结构钛合金[J]. 金属学报, 2017, 53(4): 440-446.
[2] 朱敏, 鲁忠臣, 胡仁宗, 欧阳柳章. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用*[J]. 金属学报, 2016, 52(10): 1239-1248.
[3] 胡娜, 薛丽红, 顾健, 李和平, 严有为. 磨球级配对MA-SPS原位合成Al13Fe4/Al复合材料的组织结构及力学性能的优化*[J]. 金属学报, 2015, 51(2): 216-222.
[4] 潘昆明,张来启,魏世忠,李继文,李豪,林均品. Mo-Si-B三元系中T2相合金的制备工艺研究*[J]. 金属学报, 2015, 51(11): 1377-1383.
[5] 王曼,周张健,闫志刚,于鹏飞,孙红英. ODS-316奥氏体钢显微结构及弥散相的TEM研究[J]. 金属学报, 2013, 49(2): 153-158.
[6] 吕铮,卢晨阳,张守辉,谢锐,刘春明. 纳米结构14Cr-ODS铁素体钢的制备与微观结构[J]. 金属学报, 2012, 48(6): 649-653.
[7] 谈军 周张健 刘亚勤 屈丹丹 钟铭 葛昌纯. 碳纳米管对W显微组织结构及其性能的影响[J]. 金属学报, 2011, 47(12): 1555-1560.
[8] 赵世贤 宋晓艳 王明胜 魏崇斌 张久兴 刘雪梅. WC/Co粉体粒径匹配与放电等离子烧结致密化[J]. 金属学报, 2009, 45(4): 497-502.
[9] 邓小霞; 程宏辉; 李慎兰; 吕曼祺; 陈德敏; 杨柯 . 吸、放氢循环对V及V0.9Cr0.1合金储氢性能的影响[J]. 金属学报, 2007, 43(9): 977-982 .
[10] 卢年端; 宋晓艳; 张久兴 ; 闫相全; 李尔东 . 稀土Nd超细纳米晶块体的制备及其物理性能[J]. 金属学报, 2007, 43(7): 739-743 .
[11] 赵世贤; 宋晓艳; 张久兴; 刘雪梅 . 原料粉末粒径匹配和结合状态对放电等离子技术制备超细硬质合金的影响[J]. 金属学报, 2007, 42(1): 0-112 .
[12] 刘雪梅; 宋晓艳; 张久兴 . 放电等离子烧结过程中粉末颗粒内部温度场的模拟及颈部演变[J]. 金属学报, 2006, 42(7): 757-762 .
[13] 赵占奎; 姚可夫; 金松哲; 李敬锋 . 放电等离子烧结制备超高强度块体Al90Mn9Ce1合金[J]. 金属学报, 2005, 41(12): 1298-1302 .
[14] 张来昌; 沈智奇; 徐坚 . Sn替代Si和B对Ti50Ni22Cu18Al4Si4B2合金机械研磨非晶化的促进作用[J]. 金属学报, 2004, 40(9): 981-986 .
[15] 张晓强; 徐; 坚 . 机械研磨形成W颗/La55Al25Cu10Ni5Co5金属玻璃基复合材料[J]. 金属学报, 2004, 40(6): 647-.