Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 21-30    DOI: 10.11900/0412.1961.2014.00329
  本期目录 | 过刊浏览 |
终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响
高古辉1, 桂晓露1, 安佰锋1, 谭谆礼1, 白秉哲2(), 翁宇庆2
1 北京交通大学机械与电子控制工程学院材料中心, 北京 100044
2 清华大学材料学院先进材料教育部重点实验室, 北京 100084
EFFECT OF FINISH COOLING TEMPERATURE ON MICROSTRUCTURE AND LOW TEMPERATURE TOUGHNESS OF Mn-SERIES ULTRA-LOW CARBON HIGH STRENGTH LOW ALLOYED STEEL
GAO Guhui1, GUI Xiaolu1, AN Baifeng1, TAN Zhunli1, BAI Bingzhe2(), WENG Yuqing2
1 Material Science and Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044
2 Key Laboratory of Advanced Material, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
引用本文:

高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响[J]. 金属学报, 2015, 51(1): 21-30.
Guhui GAO, Xiaolu GUI, Baifeng AN, Zhunli TAN, Bingzhe BAI, Yuqing WENG. EFFECT OF FINISH COOLING TEMPERATURE ON MICROSTRUCTURE AND LOW TEMPERATURE TOUGHNESS OF Mn-SERIES ULTRA-LOW CARBON HIGH STRENGTH LOW ALLOYED STEEL[J]. Acta Metall Sin, 2015, 51(1): 21-30.

全文: PDF(9888 KB)   HTML
摘要: 

研究了终冷温度(550, 450和350 ℃)对Mn系超低碳高强度低合金钢组织及低温韧性的影响. 力学性能的测试结果表明, 在终冷温度为450 ℃时, 实验钢获得良好的强韧性配合, 屈服强度为775 MPa, 韧脆转变温度为-55 ℃. 组织观察及晶体学表征结果表明, 随着终冷温度的降低, 组织逐渐由粒状贝氏体向板条贝氏体和板条马氏体转变; 终冷温度为450 ℃时, 组织以板条贝氏体为主, 多数的板条束包含三组不同的板条块, 有效晶粒尺寸最小, 大角晶界比例达到最大. 解理裂纹扩展路径的观察结果表明, 具有大角晶界的贝氏体板条块对解理裂纹扩展具有显著的阻碍作用, 因此板条块尺寸细化、大角晶界比例增加是低温韧性改善的主要原因.

关键词 超低碳低合金高强钢贝氏体组织低温韧性板条块晶体学特征    
Abstract

Recently, the steel plates used in the ship, pipeline and bridge generally required not only high strength but also excellent low temperature toughness. As a competitive candidate, the ultra-low carbon high strength low alloyed (HSLA) steel has been developed widely. The low temperature toughness depends on the microstructure of the steels. Therefore, the relationship of low temperature toughness and microstructure should be studied in detail. In the present work, the steel plates with 25 mm thickness after hot rolling were immediately water quenched to 550, 450 and 350 ℃(finish cooling temperature), respectively, and subsequently air cooled to room temperature. The effect of finish cooling temperature on the microstructure and low temperature toughness of Mn-series ultra-low carbon HSLA steel was investigated by SEM, TEM and crystallographic analysis. The results show that the granular bainite, lath bainite and martensite were obtained with finish cooling temperatures decreasing. There are three blocks with different orientations in a single packet for lath bainite microstructure in the sample with finish cooling temperature of 450 ℃, leading to the refinement of effective grain size and large amount of high-angle grain boundaries. Electron backscattered diffraction analyses of the cleavage crack path show that the bainite block boundaries can strongly hinder fracture propagation, and thus the refinement of bainite blocks can improve the low temperature toughness of Mn-series ultra-low carbon HSLA steel. Finally, the yield strength of 775 MPa and ductile-brittle transition temperature of -55 ℃can be achieved when the finish cooling temperature is 450 ℃.

Key wordsultra-low carbon HSLA steel    bainite microstructure    low temperature toughness    block    crystallographic feature
    
ZTFLH:  TG146.2  
基金资助:*中央高校基本科研业务费资助项目2014JBM101
作者简介: null

高古辉, 男, 1987年生, 助理研究员

图1  不同终冷温度时ULC-HSLA钢的韧脆转变曲线
FCT
Tensile strength
MPa
Yield strength
MPa
Yield ratio
Elongation
%
550 972 745 0.766 21.5
450 990 775 0.782 17.5
350 996 783 0.786 17.0
表1  不同终冷温度下超低碳高强度低合金钢(ULC-HSLA钢)的拉伸性能
图2  不同终冷温度下ULC-HSLA钢的显微组织
Variant Plane parallel Direction parallel Rotation from Variant 1 Angle / (o)
V1 (111)fcc∥(011)bcc [101]fcc∥[1 11]bcc - -
V2 [101]fcc∥[111]bcc [0.58 -0.58 0.58] 60.0
V3 [011]fcc∥[1 11]bcc [0.0 -0.71 -0.71] 60.0
V4 [011]fcc∥[111]bcc [0.0 0.71 0.71] 10.5
V5 [110]fcc∥[1 11]bcc [0.58 0.71 0.71] 60
V6 [110]fcc∥[111]bcc [0.0 -0.71 -0.71] 49.5
V7 (111)fcc∥(011)bcc [101]fcc∥[1 11]bcc [-0.58 -0.58 0.58] 49.5
V8 [101]fcc∥[111]bcc [0.58 -0.58 0.58] 10.5
V9 [1 10]fcc∥[1 11]bcc [-0.19 0.77 0.61] 50.5
V10 [1 10]fcc∥[111]bcc [-0.49 -0.46 0.74] 50.5
V11 [011]fcc∥[1 11]bcc [0.35 -0.93 -0.07] 14.9
V12 [011]fcc∥[111]bcc [0.36 -0.71 0.60] 57.2
V13 (111)fcc∥(011)bcc [011]fcc∥[1 11]bcc [0.93 0.35 0.07] 14.9
V14 [011]fcc∥[111]bcc [0.74 0.46 -0.49] 50.5
V15 [101]fcc∥[1 11]bcc [-0.25 -0.63 -0.74] 57.2
V16 [101]fcc∥[111]bcc [0.66 0.66 0.36] 20.6
V17 [110]fcc∥[1 11]bcc [-0.66 0.36 -0.66] 51.7
V18 [110]fcc∥[111]bcc [-0.3 -0.63 -0.72] 47.1
V19 (111)fcc∥(011)bcc [110]fcc∥[1 11]bcc [-0.61 0.19 -0.77] 50.5
V20 [110]fcc∥[111]bcc [-0.36 -0.6 -0.71] 57.2
V21 [01 1]fcc∥[1 11]bcc [0.96 0.0 -0.30] 20.6
V22 [01 1]fcc∥[111]bcc [0.72 0.3 -0.63] 47.1
V23 [101]fcc∥[1 11]bcc [0.74 -0.25 0.063] 57.2
V24 [101]fcc∥[111]bcc [0.91 -0.41 0.0] 21.1
表2  24种K-S关系变体[15]
图3  终冷温度为550 ℃时ULC-HSLA钢EBSD分析结果
图4  终冷温度为550 ℃时ULC-HSLA钢的边界图、点与A点的取向差及点-点取向差
图5  终冷温度为450 ℃时ULC-HSLA钢EBSD分析结果
图6  终冷温度为450 ℃时ULC-HSLA钢的边界图、点与A点的取向差及点-点取向差
图7  终冷温度为450 ℃时ULC-HSLA钢的SEM像和EBSD分析结果
图8  终冷温度为350 ℃时ULC-HSLA钢EBSD分析结果
图9  终冷温度为550和350 ℃时解理裂纹扩展路径
  
[1] Ghosh A, Das S, Chatterjee S, Rao Ramachandra P. Mater Charact, 2006; 56: 59
[2] Dong H. Sci China Technol Sci, 2012; 55: 1774
[3] Wang W, Shan Y Y, Yang K. Acta Metall Sin, 2007; 43: 578
[3] (王 伟, 单以银, 杨 柯. 金属学报, 2007; 43: 578)
[4] You Y, Wang X M, Shang C J. Acta Metall Sin, 2012; 48: 1290
[4] (由 洋, 王学敏, 尚成嘉. 金属学报, 2012; 48: 1290)
[5] Wang X Y, Pan T, Wang H, Su H, Li X Y, Cao X Z. Acta Metall Sin, 2012; 48: 401
[5] (王小勇, 潘 涛, 王 华, 苏 航, 李向阳, 曹兴忠. 金属学报, 2012; 48: 401)
[6] Liu D S, Cheng B G, Luo M. Acta Metall Sin, 2011; 47: 1233
[6] (刘东升, 程丙贵, 罗 咪. 金属学报, 2011; 47: 1233)
[7] Di G B, Liu Z Y, Hao L Q, Liu X H. Mater Mech Eng, 2008; 32(8): 1
[7] (狄国标, 刘振宇, 郝利强, 刘相华. 机械工程材料, 2008; 32(8): 1)
[8] Zhou T, Yu H, Hu J, Wang S. Mater Sci Eng, 2014; A615: 436
[9] Xie Z, Fang Y, Han G, Guo H, Misra R D K, Shang C. Mater Sci Eng, 2014; A618: 112
[10] Wang C F, Wang M Q, Shi J, Hui W J, Dong H. Scr Mater, 2008; 58: 492
[11] Schino D A, Guarnschelli C. Mater Lett, 2009; 63: 1968
[12] Chen J, Tang S, Liu Z Y, Wang G D. Mater Sci Eng, 2013; A559: 241
[13] Sung H K, Shin S Y, Hwang B, Lee C G, Lee S. Metall Mater Trans, 2013; 44A: 294
[14] Nie W J, Shang C J, You Y, Zhang X B, Sundaresa S. Acta Metall Sin, 2012; 48: 797
[14] (聂文金, 尚成嘉, 由 洋, 张晓兵, Sundaresa S. 金属学报, 2012; 48: 797)
[15] Morito S, Tanaka H, Konishi R, Furuhara T, Maki T. Acta Mater, 2003; 51: 1789
[16] Davis C L, King J E. Metall Mater Trans, 1994; 25A: 563
[17] Tomita Y, Okabayashi K. Metall Trans, 1986; 17A: 1203
[18] Naylor J P. Metall Trans, 1979; 10A: 861
[19] Morito S, Huang X, Furuhara T, Maki T, Hansen N. Acta Mater, 2006; 54: 5323
[20] Furuhara T, Kawata H, Morito S, Maki T. Mater Sci Eng, 2006; A431: 228
[21] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279
[22] Kawata H, Sakamoto K, Moritani T, Morito S, Furuhara T, Maki T. Mater Sci Eng, 2006; A438: 140
[23] Han S Y, Shin S Y, Seo C H, Lee H, Bae J H, Kim K, Lee S, Kim N J. Metall Mater Trans, 2009; 40A: 1851
[24] Shin S, Hwang B, Lee S, Kim N J, Ahn S. Mater Sci Eng, 2007; A458: 281
[25] Pickering F B, Gladman T. ISI Spec Rep, 1961; 81: 10
[1] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[2] 马秀良, 胡肖兵. 高温合金中硼化物精细结构的高空间分辨电子显微学研究[J]. 金属学报, 2018, 54(11): 1503-1524.
[3] 王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.
[4] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[5] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[6] 王长军,梁剑雄,刘振宝,杨志勇,孙新军,雍岐龙. 亚稳奥氏体对低温海工用钢力学性能的影响与机理*[J]. 金属学报, 2016, 52(4): 385-393.
[7] 谢振家,尚成嘉,周文浩,吴彬彬. 低合金多相钢中残余奥氏体对塑性和韧性的影响*[J]. 金属学报, 2016, 52(2): 224-232.
[8] 刘东升 程丙贵 罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47(10): 1233-1240.
[9] 杨银辉 柴锋 严彪 苏航 杨才福. Ti处理改善船体钢焊接粗晶区的低温韧性研究[J]. 金属学报, 2010, 46(1): 62-70.
[10] 杨跃辉 蔡庆伍 武会宾 王华. 两相区热处理过程中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J]. 金属学报, 2009, 45(3): 270-274.
[11] 胡本芙; 贾成厂 . Fe-Cr-Mn(W,V)奥氏体钢的低温韧性[J]. 金属学报, 2001, 37(7): 703-708 .
[12] 国旭明; 钱百年 . 电磁搅拌对管线钢埋弧焊熔敷金属低温韧性的影响[J]. 金属学报, 2000, 36(2): 177-180 .
[13] 刘晓坤;王建军;路民旭;金石;傅祥炯. 马氏体与贝氏体组织GC-4超高强度钢的腐蚀疲劳裂纹扩展[J]. 金属学报, 1993, 29(12): 27-33.
[14] 雷鸣;郭蕴宜. 9%Ni钢中沉淀奥氏体的形成过程及其在深冷下的表现[J]. 金属学报, 1989, 25(1): 13-17.