Please wait a minute...
金属学报  2012, Vol. 48 Issue (11): 1403-1408    DOI: 10.3724/SP.J.1037.2012.00250
  论文 本期目录 | 过刊浏览 |
均匀化处理对GH742合金热变形行为的影响
潘晓林1),  汪波2),  孙文儒3), 涂赣峰1), 郭守仁3), 胡壮麒3)
1) 东北大学材料与冶金学院, 沈阳 110089
2) 中国人民解放军驻四三零厂代表室, 西安 710021
3) 中国科学院金属研究所, 沈阳 110016
EFFECT OF HOMOGENIZATION TREATMENT ON THE HOT DEFORMATION OF GH742 ALLOY
PAN Xiaolin1), WANG Bo2),  SUN Wenru3),  TU Ganfeng1), GUO Shouren3), HU Zhuangqi3)
1) School of Materials \& Metallurgy, Northeastern University, Shenyang 110089
2) PLA Office in 430 Factory, xi'an 710021
3) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

潘晓林 汪波 孙文儒 涂赣峰 郭守仁 胡壮麒. 均匀化处理对GH742合金热变形行为的影响[J]. 金属学报, 2012, 48(11): 1403-1408.
PAN Xiaolin WANG Bo SUN Wenru TU Ganfeng GUO Shouren HU Zhuangqi. EFFECT OF HOMOGENIZATION TREATMENT ON THE HOT DEFORMATION OF GH742 ALLOY[J]. Acta Metall Sin, 2012, 48(11): 1403-1408.

全文: PDF(700 KB)  
摘要: 

采用Gleeble-3500热模拟试验机研究了未均匀化、部分均匀化和完全均匀化处理的高合金化GH742合金铸锭的等温热变形行为. 结果表明, 随着均匀化程度的提高, 合金热变形过程中的流动应力逐渐降低, 塑性提高, 动态再结晶程度增加; 元素偏析和γ'相和δ相等析出相导致变形过程中形成大量的位错和形变带, 提高了合金的变形抗力; 大块Laves相和Ni5Ce相等脆性相破碎后容易形成微裂纹; 大块、密集分布的一次析出MC型碳化物在变形过程中容易产生条带组织, 并形成应力集中区, 导致裂纹萌生. 采用低温预处理和高温扩散相结合的均匀化制度, 能够消除元素偏析和有害脆性相, 改善碳化物尺寸和分布, 降低热变形抗力, 明显提高合金的热塑性, 获得均匀的再结晶组织.

关键词 镍基高温合金均匀化热塑性流动应力动态再结晶    
Abstract

As the increases of alloying elements, the highly alloyed Ni-based superalloys are very difficult to deform due to the low deformation plasticity, high flow stress and narrow deformation temperature interval. The hot deformation behavior of highly alloyed as-cast and homogenization treated GH742 alloys was investigated by isothermal compression conducted on a Gleeble-3500 thermo-simulation machine. The ingots were homogenization treated at 1140 ℃ for 6 h or at 1100 ℃ for 30 h and at 1160 ℃ for 40 h, followed by furnace cooling to 800 ℃ and then air cooling to room temperarue. The GH742 alloys possess lower flow stress, higher plasticity and larger recrystallization degree as the homogenization degree increases during the deformation process. High dislocation density and deformation bands are formed due to the elemental segregation and the precipitates of γ' and δ phase in the interdendritic regions, which enhance the flow stress. Mircocracks are initiated when the brittle precipitates such as Laves phase and Ni5Ce phase are crushed by compression. Stress concentration area as well as the banded structure of carbides is formed when the primary MC type carbides are deformed. The two-step homogenization treatment via low temperature pretreatment followed by high temperature diffusion presented by this paper can not only eliminate the elemental segregation and the detrimental precipitates, but also improve the dimension and distribution of MC type carbides, which decreases the flow stress, increases the hot deformation plasticity remarkably, and obtains homogeneously recrystallized microstructure.

Key wordsNi-based superalloy    homogenization    hot plasticity    flow stress    dynamic recrystallization
收稿日期: 2012-05-03     
作者简介: 潘晓林, 男, 1981年生, 讲师, 博士

[1] Yuan Y, Gu Y F, Osada T, Zhong Z H, Yokokawa T, Harada H. Scr Mater, 2012; 67: 137

[2] Xie G, Wang L, Zhang J, Lou L H. Scr Mater, 2012; 66: 378

[3] Ning Y Q, Yao Z K, Fu M W, Guo H Z. Mater Sci Eng, 2011; A528: 8065

[4] Wu K, Liu G Q, Hu B F, Li F, Zhang YW, Tao Y, Liu J T. Mater Charact, 2010; 61: 330

[5] Li D F, Guo Q M, Guo S L, Peng H J, Wu Z G. Mater Des, 2011; 32: 696

[6] Zhong Z Y, Zhuang J Y. J Iron Steel Res, 2003; 15: 1

(仲增墉, 庄景云. 钢铁研究学报, 2003; 15: 1)

[7] Qu J L, Bi Z N, Du J H, Wang M Q, Wang Q Z, Zhang J. J Iron Steel Res, 2011; 18: 59

[8] Zhang B J, Zhao G P, Xu G H, Feng D. Acta Metall Sin, 2005; 41: 1207

(张北江, 赵光普, 胥国华, 冯涤. 金属学报, 2005; 41: 1207)

[9] Lu X D, Du J H, Deng Q, Zhong Z Y. J Alloys Compd, 2009; 486: 195

[10] Long Z D, Zhuang J Y, Deng B, Zhong Z Y. Acta Metall Sin, 1999; 35: 1211

(龙正东, 庄景云, 邓波, 仲增墉. 金属学报, 1999; 35: 1211)

[11] Zheng L, Gu C Q, Zheng Y R. Scr Mater, 2004; 50: 435

[12] Gizan X R, Liu E Z, Zheng Z, Yu Y S, Tong J, Zhai Y C. J Mater Sci Technol, 2011; 27: 113

[13] Wang K, Si H, Yang C, Xu T D. J Iron Steel Res Int, 2011; 18: 61

[14] Dupont J N, Robino C V, Michael J R, Notis M R, Marder A R. Metall Mater Trans, 1998; 29A: 2785

[15] Pan X L, Yu H Y, Tu G F, Sun W R, Hu Z Q. Trans Nonferrous Met Soc China, 2011; 21: 2402

[16] Semiatin S L, Kramb R C, Turner R E, Zhang F, Antony M M. Scr Mater, 2004; 51: 491

[17] Wang L, Pyczak F, Zhang J, Lou L H, Singer R F. Mater Sci Eng, 2011; A532: 487

[18] Kramb R C, Antony M M, Semiatin S L. Scr Mater, 2006; 54: 1645

[19] Pan X L, Sun W R, Li Z, Yang S L, Guo S R, Yang H C, Hu Z Q. Rare Met Mater Eng, 2010; 39: 55

(潘晓林, 孙文儒, 李 战, 杨树林, 郭守仁, 杨洪才, 胡壮麒. 稀有金属材料与工程, 2010; 39: 55)

[20] Pan X L, Yu H Y, Tu G F, SunWR, Hu Z Q. Mater Sci Technol, 2012; 28: 560

[21] Pan X L, Sun W R, Yang S L, Li Z, Guo S R, Yang H C, Hu Z Q. Chin J Mater Res, 2008; 22: 651

(潘晓林, 孙文儒, 杨树林, 李 战, 郭守仁, 杨洪才, 胡壮麒. 材料研究学报, 2008; 22: 651)

[22] Gottstein G, Deshpande S. Mater Sci Eng, 1987; 94: 147

[23] Wang Y, Shao W Z, Zhen L, Zhang B Y. Mater Sci Eng, 2011; A528: 3218

[24] Ning Y Q, Yao Z K, Liang X M, Liu Y H. Mater Sci Eng, 2012; A551: 7

[25] Wang K, Li M Q, Luo J, Li C. Mater Sci Eng, 2011; A528: 4723

[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[7] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[10] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[11] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[12] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[13] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[14] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[15] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.