Please wait a minute...
金属学报  2011, Vol. 47 Issue (1): 34-40    DOI: 10.3724/SP.J.1037.2010.00189
  论文 本期目录 | 过刊浏览 |
Nb-B复合高强度集装箱用钢的高温变形行为
宋仁伯1), 张永坤1), 文新理2), 贾翼速1)
1) 北京科技大学材料科学与工程学院, 北京 100083
2) 鞍山钢铁股份有限公司热轧带钢厂, 鞍山 114000
HOT DEFORMATION BEHAVIOR OF A HIGH STRENGTH CONTAINER STEEL COMPOUNDED WITH Nb-B
SONG Renbo1), ZHANG Yongkun1),  WEN Xinli2),  JIA Yisu1)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) Hot Rolling Strip Plant, Anshan Iron & Steel Co., Ltd., Anshan 114000
引用本文:

宋仁伯 张永坤 文新理 贾翼速. Nb-B复合高强度集装箱用钢的高温变形行为[J]. 金属学报, 2011, 47(1): 34-40.
. HOT DEFORMATION BEHAVIOR OF A HIGH STRENGTH CONTAINER STEEL COMPOUNDED WITH Nb-B[J]. Acta Metall Sin, 2011, 47(1): 34-40.

全文: PDF(1159 KB)  
摘要: 在Gleeble-1500热模拟试验机上, 通过单道次高温压缩变形实验, 研究Nb-B复合高强度集装箱用钢的高温变形行为. 结果表明: 在本实验所采用的变形工艺参数范围内, 实验钢在热加工硬化过程中, 当应变速率为0.1和1 s-1时, 应变硬化指数n与真应变ε曲线上出现“单波峰”和“单波谷”; 应变速率为5和15 s-1时, 应变硬化指数n与真应变ε曲线上出现“双波峰”和“双波谷”现象, 在热加工硬化过程中的硬化机制以位错强化、孪晶强化和析出强化为主. 根据Zener-Hollomon和Ludwik方程, 对实验数据进行非线性拟合, 得出在1123-1423 K范围内的变形激活能和应力指数分别为(428.188±20.109) kJ/mol和4.923, 并建立了Z参数的表达式、热变形方程、动态再结晶的模型图.
关键词 Nb-B钢真应力-真应变曲线应变硬化指数动态再结晶激活能    
Abstract:Hot deformation behaviors of high strength container steel compounded with Nb-B have been systematically studied through high temperature compression tests on the Gleeble-1500 thermal-mechanical simulator. In the present deformation conditions, there are different relationships between the strain hardening exponent (n) and the true strain (ε) under different strain rates at the deformation temperature of 1423 K; n-ε curves have single peak and single valley at the strain rates of 0.1 s-1 and 1 s-1, while n-ε curves have double peaks and double valleys at the strain rates of 5 s-1 and 15 s-1. During the heat work-hardening process, dislocation strengthening, twin strengthening and precipitation strengthening are the major work-hardening mechanisms of the tested steel. According to Zener-Hollomon and Ludwik equation, the experimental data have been regressed by using nonlinear method, the apparent deformation activation energy (Q) and stress exponent (n) were obtained to be about (428.188±20.109) kJ/mol and 4.923 in the temperature range of 1123 K-1423 K, respectively. Finally, an expression of Z parameter, hot deformation equation and dynamic recrystallization model diagram of the tested steel are established.
Key wordsNb-B steel    true stress-true strain curve    strain hardening exponent    dynamic recrystallization    activation energy
收稿日期: 2010-04-18     
作者简介: 宋仁伯, 男, 1970年生, 教授, 博士
[1] Prasad S N, Mediratta S R, Sarma D S. Mater Sci Eng, 2003; A358: 288

[2] He X L, Shang C J, Yang S W. High–performance Low– carbon Bainitic Steel. Beijing: Metallurgical Industry Press, 2008: 6

(贺信莱, 尚成嘉, 杨善武. 高性能低碳贝氏体钢. 北京: 冶金工业出版社, 2008: 6)

[3] Zhang C L, Cai D Y, Zhao T C. Mater Lett, 2004; 58: 1524

[4] Zhao Y T, Yang S W, Shang C J, Wang X M, Liu W, He X L. Mater Sci Eng, 2007; A454–455: 695

[5] Yang S W, Chen Y S. J Mater Sci Eng, 1994; 12(2): 49

(杨善武, 陈钰珊. 材料科学与工程, 1994; 12(2): 49

[6] Shang C J, Wang X M, He X L. Acta Metall Sin, 2008; 44: 287

(尚成嘉, 王学敏, 贺信莱. 金属学报, 2008; 44: 287)

[7] Monteiro S N, Reed–Hill R E. Metall Trans, 1973; 4: 1011

[8] Crussard C. Rev Metall, 1953; 10: 697

[9] Song R B, Xiang J Y, Hou D P. Acta Metall Sin, 2010; 46: 57

(宋仁伯, 项建英, 侯东坡. 金属学报, 2010; 46: 57)

[10] Liu Y Z, Ren X P, Wang Z D. Material Forming Theory.Beijing: National Defence Industry Press, 2004: 337

(刘雅政, 任学平, 王自东. 材料成形理论基础. 北京: 国防工业出版社, 2004: 337)

[11] Bai D Q, We S, Sun W P, Jonas J J. Metall Trans, 1993; 24A: 2151

[12] Poliak E I, Jonas J J. ISIJ Int, 2003; 43: 684

[13] Abbs N, Jonas J J. ISIJ Int, 2006; 46: 1679

[14] Ryan N D, McQueen H J. Can Metall Q, 1990; 29(2): 147

[15] Mecking H, Kocks U F. Acta Metall, 1981; 29: 1865

[16] Zener C, Hollomon J H. Appl Phys, 1944; 15: 22

[17] Mcqueen H J. Metall Mater Trans, 2002; 22A: 345

[18] Karhausen K, Kopp R. Steel Res, 1992; 63: 249

[19] Sellars C M, Tegart W J M. Mem Sci Rev Met, 1966; 63: 731

[20] Srinivasan N, Prasad Y R K. J Mater Process Technol, 1995; 51: 171

[21] Lan S H, Lee H J, Lee S H, Ni J, Lai X M, Lee H W, Song J H, Lee M G. Mater Des, 2009; 30: 3879
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[6] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[8] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[9] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[10] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[11] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[12] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[13] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[14] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[15] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.