Please wait a minute...
金属学报  2011, Vol. 47 Issue (1): 34-40    DOI: 10.3724/SP.J.1037.2010.00189
  论文 本期目录 | 过刊浏览 |
Nb-B复合高强度集装箱用钢的高温变形行为
宋仁伯1), 张永坤1), 文新理2), 贾翼速1)
1) 北京科技大学材料科学与工程学院, 北京 100083
2) 鞍山钢铁股份有限公司热轧带钢厂, 鞍山 114000
HOT DEFORMATION BEHAVIOR OF A HIGH STRENGTH CONTAINER STEEL COMPOUNDED WITH Nb-B
SONG Renbo1), ZHANG Yongkun1),  WEN Xinli2),  JIA Yisu1)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) Hot Rolling Strip Plant, Anshan Iron & Steel Co., Ltd., Anshan 114000
全文: PDF(1159 KB)  
摘要: 在Gleeble-1500热模拟试验机上, 通过单道次高温压缩变形实验, 研究Nb-B复合高强度集装箱用钢的高温变形行为. 结果表明: 在本实验所采用的变形工艺参数范围内, 实验钢在热加工硬化过程中, 当应变速率为0.1和1 s-1时, 应变硬化指数n与真应变ε曲线上出现“单波峰”和“单波谷”; 应变速率为5和15 s-1时, 应变硬化指数n与真应变ε曲线上出现“双波峰”和“双波谷”现象, 在热加工硬化过程中的硬化机制以位错强化、孪晶强化和析出强化为主. 根据Zener-Hollomon和Ludwik方程, 对实验数据进行非线性拟合, 得出在1123-1423 K范围内的变形激活能和应力指数分别为(428.188±20.109) kJ/mol和4.923, 并建立了Z参数的表达式、热变形方程、动态再结晶的模型图.
关键词 Nb-B钢真应力-真应变曲线应变硬化指数动态再结晶激活能    
Abstract:Hot deformation behaviors of high strength container steel compounded with Nb-B have been systematically studied through high temperature compression tests on the Gleeble-1500 thermal-mechanical simulator. In the present deformation conditions, there are different relationships between the strain hardening exponent (n) and the true strain (ε) under different strain rates at the deformation temperature of 1423 K; n-ε curves have single peak and single valley at the strain rates of 0.1 s-1 and 1 s-1, while n-ε curves have double peaks and double valleys at the strain rates of 5 s-1 and 15 s-1. During the heat work-hardening process, dislocation strengthening, twin strengthening and precipitation strengthening are the major work-hardening mechanisms of the tested steel. According to Zener-Hollomon and Ludwik equation, the experimental data have been regressed by using nonlinear method, the apparent deformation activation energy (Q) and stress exponent (n) were obtained to be about (428.188±20.109) kJ/mol and 4.923 in the temperature range of 1123 K-1423 K, respectively. Finally, an expression of Z parameter, hot deformation equation and dynamic recrystallization model diagram of the tested steel are established.
Key wordsNb-B steel    true stress-true strain curve    strain hardening exponent    dynamic recrystallization    activation energy
收稿日期: 2010-04-18     
通讯作者: 宋仁伯     E-mail: songrb@mater.ustb.edu.cn
Corresponding author: SONG Renbo     E-mail: songrb@mater.ustb.edu.cn
作者简介: 宋仁伯, 男, 1970年生, 教授, 博士

引用本文:

宋仁伯 张永坤 文新理 贾翼速. Nb-B复合高强度集装箱用钢的高温变形行为[J]. 金属学报, 2011, 47(1): 34-40.
SONG Ren-Ba. HOT DEFORMATION BEHAVIOR OF A HIGH STRENGTH CONTAINER STEEL COMPOUNDED WITH Nb-B. Acta Metall Sin, 2011, 47(1): 34-40.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2010.00189      或      https://www.ams.org.cn/CN/Y2011/V47/I1/34

[1] Prasad S N, Mediratta S R, Sarma D S. Mater Sci Eng, 2003; A358: 288

[2] He X L, Shang C J, Yang S W. High–performance Low– carbon Bainitic Steel. Beijing: Metallurgical Industry Press, 2008: 6

(贺信莱, 尚成嘉, 杨善武. 高性能低碳贝氏体钢. 北京: 冶金工业出版社, 2008: 6)

[3] Zhang C L, Cai D Y, Zhao T C. Mater Lett, 2004; 58: 1524

[4] Zhao Y T, Yang S W, Shang C J, Wang X M, Liu W, He X L. Mater Sci Eng, 2007; A454–455: 695

[5] Yang S W, Chen Y S. J Mater Sci Eng, 1994; 12(2): 49

(杨善武, 陈钰珊. 材料科学与工程, 1994; 12(2): 49

[6] Shang C J, Wang X M, He X L. Acta Metall Sin, 2008; 44: 287

(尚成嘉, 王学敏, 贺信莱. 金属学报, 2008; 44: 287)

[7] Monteiro S N, Reed–Hill R E. Metall Trans, 1973; 4: 1011

[8] Crussard C. Rev Metall, 1953; 10: 697

[9] Song R B, Xiang J Y, Hou D P. Acta Metall Sin, 2010; 46: 57

(宋仁伯, 项建英, 侯东坡. 金属学报, 2010; 46: 57)

[10] Liu Y Z, Ren X P, Wang Z D. Material Forming Theory.Beijing: National Defence Industry Press, 2004: 337

(刘雅政, 任学平, 王自东. 材料成形理论基础. 北京: 国防工业出版社, 2004: 337)

[11] Bai D Q, We S, Sun W P, Jonas J J. Metall Trans, 1993; 24A: 2151

[12] Poliak E I, Jonas J J. ISIJ Int, 2003; 43: 684

[13] Abbs N, Jonas J J. ISIJ Int, 2006; 46: 1679

[14] Ryan N D, McQueen H J. Can Metall Q, 1990; 29(2): 147

[15] Mecking H, Kocks U F. Acta Metall, 1981; 29: 1865

[16] Zener C, Hollomon J H. Appl Phys, 1944; 15: 22

[17] Mcqueen H J. Metall Mater Trans, 2002; 22A: 345

[18] Karhausen K, Kopp R. Steel Res, 1992; 63: 249

[19] Sellars C M, Tegart W J M. Mem Sci Rev Met, 1966; 63: 731

[20] Srinivasan N, Prasad Y R K. J Mater Process Technol, 1995; 51: 171

[21] Lan S H, Lee H J, Lee S H, Ni J, Lai X M, Lee H W, Song J H, Lee M G. Mater Des, 2009; 30: 3879
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[3] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[4] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[5] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[6] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[7] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[8] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[9] 王涛, 万志鹏, 孙宇, 李钊, 张勇, 胡连喜. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54(1): 83-92.
[10] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[11] 高博,王磊,梁涛沙,刘杨,宋秀,曲敬龙. 定向凝固U720Li合金的高温塑性变形行为*[J]. 金属学报, 2016, 52(4): 437-444.
[12] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
[13] 鲁世强, 王克鲁, 李鑫, 刘诗彪. 一种模拟和预测金属锻造过程动态再结晶的新方法[J]. 金属学报, 2014, 50(9): 1128-1136.
[14] 张飞, 沈健, 闫晓东, 孙建林, 蒋呐, 周华. 2099合金热变形过程中的动态软化机制*[J]. 金属学报, 2014, 50(6): 691-699.
[15] 胡可, 李小强, 屈盛官, 杨超, 李元元. 93W-5.6Ni-1.4Fe高比重合金放电等离子主烧结曲线的建立*[J]. 金属学报, 2014, 50(6): 727-736.