Please wait a minute...
金属学报  2010, Vol. 46 Issue (7): 787-793    DOI: 10.3724/SP.J.1037.2010.00092
  论文 本期目录 | 过刊浏览 |
CBr4-C2Cl6共晶合金生长的三维多相场模拟
II.层片间距对形态演化的影响
杨玉娟, 严彪
同济大学材料科学与工程学院~上海市金属功能材料开发应用重点实验室, 上海 200092
THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6  ALLOY
II. Effect of Lamellar Spacing on Morphology Evolution
YANG Yujuan, YAN Biao
School of Materials Science and Engineering, Shanghai Key Lab of Development and Application for Metal Functional Materials, Tongji University, Shanghai 200092
引用本文:

杨玉娟 严彪. CBr4-C2Cl6共晶合金生长的三维多相场模拟
II.层片间距对形态演化的影响[J]. 金属学报, 2010, 46(7): 787-793.
, . THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6  ALLOY
II. Effect of Lamellar Spacing on Morphology Evolution[J]. Acta Metall Sin, 2010, 46(7): 787-793.

全文: PDF(873 KB)  
摘要: 

利用KKSO三维多相场模型, 在等层片宽度和厚度条件下, 研究了 CBr4-C2Cl6共晶合金在不同初始层片间距条件下的三维形态演化过程、层-棒转变及三维层片间距调整机制. 研究表明, 对于亚共晶、共晶成分的CBr4-C2Cl6合金, 不同的初始层片间距可能导致共晶形态发生层--棒转变, 且发生层--棒转变的趋势与初始层片间距的大小有关; 而过共晶成分的CBr4-C2Cl6合金不会发生层-棒转变, 维持层片生长. 而且当无量纲初始层片间距在0.598-2.336之间变化时, 随着层片间距的增加, 其演化顺序为: 层片湮没后形成 1λO→T-xλO→1λO→2λO→分叉与形核→Z字型分叉→无序组织. 研究还表明,三维层片间距调整机制与二维层片间距调整机制类似, 基本机制为层片湮没和层片分叉. 当初始层片间距较小时, 发生层片湮没现象. 而当初始层片间距较大时, 层片发生分叉. 但由于多了第三方向的限制作用, 三维层片间距调整机制比二维复杂.

关键词 三维多相场共晶形态演化层-棒转变 层片间距调整    
Abstract

Using KKSO multi-phase field model, with equal lamellar width and thickness, three dimensional (3D) morphology evolution, lamellar-rod transition and the mechanism of adjustment of lamellar spacing of CBr4-C2Cl6   alloys are investigated at different initial lamellar spacings. It's found that, as for the hypoeutectic and eutectic CBr4-C2Cl6   alloy, different initial lamellar spacings may lead to lamellar-rod transition, which is related to the initial lamellar spacings. The CBr4-C2Cl6   hypereutectic lamellar alloy can't transit to rod-like eutectic, with the increase of the dimensionless initial lamellar spacings Λ in the range of 0.598-2.336, the sequence of morphology evolution is: lamellar merges to form 1λO→T-xλO→1λO→2λO→lamellar branching→zigzag bifurcation$\rightarrow$lamellar destabilizes to form the disordered pattern. The simulated results also showed that the mechanism of adjustment of lamellar spacing in 3D of the CBr4-C2Cl6   hypereutectic alloy is similar to that in two dimensions (2D), which is lamellar annihilation and branching on the whole, the lamellar annihilation takes place with a smaller initial lamellar spacing while the lamellar branching takes place with a bigger initial lamellar spacing. The adjustment mechanism of the lamellar spacing in 3D is more complex than that in 2D because of the additional effect of the third dimension.

Key wordsthree dimensional multi-phase field    eutectic    morphology evolution    lamellar-rod transition    adjustment of lamellar spacing
收稿日期: 2010-02-19     
基金资助:

中国博士后科学基金项目20090460654, 上海市科委项目0752nm004和08DZ2201300资助

作者简介: 杨玉娟, 女, 1981年生, 博士

[1] Cochrane R F, Greer A L, Eckler K, Herlach D M. Mater Sci Eng, 1991; A133: 698
[2] Li J F, Zhou Y H. Acta Mater, 2005; 53: 2351
[3] Kurz W, Fisher D J. Fundamentals of Solidification. 4th Ed., Switzerland, Germany, UK and USA: Trans Tech Publication, 1998: 93
[4] Davis H S. Theory of Solidification. New York: Cambridge University Press, 2001: 255
[5] Huang W D, Shan B L, Zhou Y H. Acta Phy Sin, 1991; 40: 323
(黄卫东, 商宝禄, 周尧和. 物理学报, 1991; 40: 323)
[6] Langer J S. In: Souletie J, Vannimenus J, Stora R, eds., Chance and Matter: Les Houches, Session XLVI, 1986, Amsterdam: Elsevier Science Publisher B. V., 1987: 629
[7] Caginalp G, Fife P. Phys Rev, 1986; 33B: 7792
[8] Karma A, Rappel W J. Phys Rev, 1998; 57E: 4323
[9] Yang Y J, Yan B. Acta Metall Sin, 2010; 46: 781
(杨玉娟, 严彪. 金属学报, 2010; 46: 781)
[10] Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Li J J, Yang G C. J Crys Growth, 2009; 311: 2496
[11] Hurle D T J, Jakeman E. J Crys Growth, 1968; 3–4: 574
[12] Jackson K A, Hunt J D. Trans Metall Soc of AIME, 1966; 236: 1129
[13] Liu S, Lee J H, Enlow D, Trivedi R. In: Rappaz M, Beckerman C, Trivedi R, eds., Proc Symposium Sponsored by the Solidification Committee of MPMD of TMS, Charlotte, North Carolina: TMS Publication, 2004: 257
[14] Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Li J J, Yang G C. Metall Mater Trans, 2009; 40A: 1670
[15] Karma A, Sarkissian A. Metall Mater Trans, 1996; 27A: 635
[16] Datye V, Langer J S. Phys Rev, 1981; 24B: 4155
[17] Walker H, Liu S, Lee H J, Trivedi R. Metall Mater Trans, 2007; 38A: 1417

[1] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[2] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[3] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[4] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[5] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[6] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[7] 许军锋, 张宝东, Peter K Galenko. 含有化合物相的共晶转变理论模型[J]. 金属学报, 2021, 57(10): 1320-1332.
[8] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[9] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[10] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[11] 闫华东,靳慧. G20Mn5N铸钢件微细观孔洞三维特征及形态演化[J]. 金属学报, 2019, 55(3): 341-348.
[12] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
[13] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[14] 王光东, 田妮, 何长树, 赵刚, 左良. DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成[J]. 金属学报, 2018, 54(7): 1059-1067.
[15] 张建锋, 蓝青, 乐启炽. 交流磁场致Al-Fe亚共晶合金熔体热电势变化的研究[J]. 金属学报, 2018, 54(7): 1042-1050.