Please wait a minute...
金属学报  2010, Vol. 46 Issue (7): 781-786    DOI: 10.3724/SP.J.1037.2010.00091
  论文 本期目录 | 过刊浏览 |
CBr4-C2Cl6共晶合金生长的三维多相场模拟 I. 模型建立及验证
杨玉娟, ,严彪
同济大学材料科学与工程学院~上海市金属功能材料开发应用重点实验室, 上海 200092
THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6 ALLOY
I. Modeling and Testing
YANG Yujuan, YAN Biao
School of Materials Science and Engineering, Shanghai Key Lab of Development and Application for Metal Functional Materials, Tongji University, Shanghai 200092
引用本文:

杨玉娟 严彪. CBr4-C2Cl6共晶合金生长的三维多相场模拟 I. 模型建立及验证[J]. 金属学报, 2010, 46(7): 781-786.
, . THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6 ALLOY
I. Modeling and Testing[J]. Acta Metall Sin, 2010, 46(7): 781-786.

全文: PDF(928 KB)  
摘要: 

将KKSO多相场模型扩展至三维, 通过低层片厚度测试验证了模型建立和参数选择的正确性. 利用KKSO三维多相场模型, 在低厚度条件下研究了亚共晶、共晶及过共晶合金的三维形态演化. 结果表明, 三维形态演化与二维类似, 当无量纲初始层片间距在0.598-2.336之间变化时, 随着初始层片间距的增加, CBr4-C2Cl6共晶合金形态演化的顺序为: 层片淹没→稳态生长→层片振荡→层片分叉. 由于三维多了第三方向的限制作用, 其形态演化的临界值明显低于二维.

关键词 三维多相场低层片厚度形态演化    
Abstract

The KKSO multi-phase field model is extended to three dimensions (3D). The modeling and the choice of parameters are confirmed to be correct by tests with low lamellar thickness. With the KKSO multi-phase field model, the morphology evolution of hypoeutectic, eutectic and hypereutectic CBr4-C2Cl6  alloy is studied with low lamellar< thickness. The simulated results showed that the morphology evolution in 3D is similar to that in two dimensions (2D). With the increase of the dimensionless initial lamellar spacings Λ in the range of 0.598-2.336, the sequence of morphology evolution is: lamellar merges→stable growth→lamellar oscillation→lamellar branching. But the critical value of morphology evolution in 3D is smaller than that in 2D due to effect of the third dimension.

Key wordsthree dimensional (3D) multi-phase field    low lamellar thickness    morphology evolution
收稿日期: 2010-02-19     
基金资助:

中国博士后基金项目20090460654, 上海市科委项目0752nm004和08DZ2201300资助

作者简介: 杨玉娟, 女, 1981年生, 博士

[1] Kurz W, Fisher D J. Fundamentals of Solidification. 4th Ed., Switzerland, Germany, UK and USA: Trans Tech Publication, 1998: 93
[2] Davis H S. Theory of Solidification. New York: Cambridge University Press, 2001: 255
[3] Jackson K A, Hunt J D. Trans Metall Soc AIME, 1966; 236: 1129
[4] Ginibre M, Akamatsu S, Faivre G. Phys Rev, 1997; 56E: 780
[5] Akamatsu S, Bottin–Rousseau S, Faivre G. Phys Rev Lett, 2004; 93: 175701
[6] Apel M, Boettger B, Diepers H J, Steinbach I. J Crys Growth, 2002; 237: 154
[7] Yang Y J, Wang J C, Zhu Y C, Yang G C. Acta Metal Sin, 2006; 42: 914
(杨玉娟, 王锦程, 朱耀产, 杨根仓. 金属学报, 2006; 42: 914)
[8] Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Yang G C. Rare Mater Eng, 2008; 37: 594
(杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓. 稀有金属材料与工程, 2008; 37: 594)
[9] Karma A, Sarkissian A. Metall Mater Trans, 1996; 27A: 635
[10] Kim S G, Kim W T, Suzuki T, Ode M. J Crys Growth, 2004; 261: 135
[11] Mergy J, Faivre G, Guthmann C, Mellet M. J Crys Growth, 1993; 134: 353
[12] Kim S G, Kim W T, Suzuki T. Phys Rev, 1998; 58E: 3316
[13] Datye V, Langer J S. Phys Rev, 1981; 24B: 4155
[14] Clark J N, Edwards J T, Elliott R. Metall Trans, 1975; 66A: 232

[1] 闫华东,靳慧. G20Mn5N铸钢件微细观孔洞三维特征及形态演化[J]. 金属学报, 2019, 55(3): 341-348.
[2] 杨玉娟 严彪. CBr4-C2Cl6共晶合金生长的三维多相场模拟
II.层片间距对形态演化的影响
[J]. 金属学报, 2010, 46(7): 787-793.