Please wait a minute...
金属学报  2009, Vol. 45 Issue (8): 994-999    
  论文 本期目录 | 过刊浏览 |
搅拌头机械载荷在搅拌摩擦焊接中的作用的数值分析
鄢东洋1;史清宇1;吴爱萍1;Juergen Silvanus2
1. 清华大学机械工程系; 北京 100084
2.European Aeronautic Defence and Space Company (EADS) Innovation Works; Munich 81663; Germany
NUMERICAL ANALYSIS ON THE FUNCTIONS OF STIR TOOL'S MECHANICAL LOADS DURING FRICTION STIR WELDING
YAN Dongyang1; SHI Qingyu1; WU Aiping1;Juergen Silvanus 2
1. Department of Mechanical Engineering; Tsinghua University; Beijing 100084
2. European Aeronautic Defence and Space Company (EADS) Innovation Works; Munich 81663; Germany
引用本文:

鄢东洋 史清宇 吴爱萍 Juergen Silvanus. 搅拌头机械载荷在搅拌摩擦焊接中的作用的数值分析[J]. 金属学报, 2009, 45(8): 994-999.
, , , . NUMERICAL ANALYSIS ON THE FUNCTIONS OF STIR TOOL'S MECHANICAL LOADS DURING FRICTION STIR WELDING[J]. Acta Metall Sin, 2009, 45(8): 994-999.

全文: PDF(772 KB)  
摘要: 

利用数值模拟技术分析搅拌头机械载荷在焊接过程中的作用, 通过对比只考虑热载荷, 考虑热载荷和搅拌头的下压力, 综合考虑热载荷、搅拌头下压力和工作扭矩三种条件下的应力、应变和变形, 结果发现, 搅拌头下压力使焊后残余应力值大幅下降; 搅拌头的工作扭矩是焊后残余应力、应变不对称分布的重要影响因素; 并且搅拌头机械载荷使得薄板焊后残余变形的模式发生了完全相反的变化, 由不考虑搅拌头载荷时的马鞍状变成了反马鞍状.

关键词 搅拌摩擦焊 数值模拟 残余应力 残余应变 残余变形    
Abstract

Besides lower welding temperature and solid phase welding process, another significant difference between friction stir welding and conventional fusion welding (FSW) is that the forming of weld seam in FSW is effected by both thermal load and mechanical loads of stir tool. However, the definite functions of mechanical loads of stir tool in FSW process are not clearly described. With FSW experiments, only the material flow around stir tool can be observed, from which the results were obtained that the mechanical loads of stir tool gave birth to the plastic flow, a key factor of weld formation, of intenerated metal around the tool. In the simulation of FSW process, mechanical loads are always neglected in most analysis models, which can’t describe the unique characteristic of FSW. Although the mechanical loads have been considered in FSW simulation by some researchers, the loads are greatly simplified and the analysis is only localized in the asymmetric distribution of residual stress. In this paper, numerical simulation was applied to investigate the functions of mechanical loads during FSW process. Based on experiments of FSW aluminium alloy sheets, three simulation models were establised with different conditions of considering thermal load only, considering both thermal load and down force, and considering thermal load, down force and working torque synthetically. The results show that the down force significantly reduces residual stress and the torque leads to the unsymmetrical distribution of residual stress. On the other hand, mechanical loads absolutely change the residual distortion pattern from saddle state into anti–saddle state. Mechanical loads strengthen the mechanical restriction on sheet, forge and extrude the materials around tool, so the residual strain in weld zone is reduced, which leads to the eduction of residual stress. Furthermore, the mechanical loads change the correlaton of strain on top surface and bottom surface of sheet, which resultes in the change of distortion pattern.

Key wordsfriction stir welding    numerical simulation    residual stress    residual strain    residual distortion
收稿日期: 2008-12-23     
ZTFLH: 

TG404

 
基金资助:

国家自然科学基金项目50875146和国家高技术发展计划项目2006AA04Z139资助

作者简介: 鄢东洋, 男, 1982年生, 博士生

[1] Thomas W M, Nicholas E D, Needham J C, Murch M G, Templesmith P, Dawes C J. Gr Br Pat Appl No. 9125978.8, 1991
[2] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[3] Colligan K. Weld J, 1999; 78: 229
[4] Li Y, Murr L E, McClure J C. Scr Mater, 1999; 40: 1041
[5] Sutton M A, Yang B, Renolds A P, Taylor R. Mater Sci Eng, 2002; A323: 160
[6] Xu S, Deng X, Reynolds A P, Seidel T U. Sci Technol Weld Join, 2001; 6: 191
[7] Khandkar M Z H, Khan J A, Reynolds A P, Sutton M A. J Mater Process Technol, 2006; 174: 195
[8] Zhu X K, Chao Y J. J Mater Process Technol, 2004; 146: 263
[9] Shi Q Y, Dickerson T L, Shercliff H R. Proc 4th Int Symp on Friction Stir Welding, Park City: TWI Center, 2003(CD-ROM)
[10] Li T, Shi Q Y, Li H K. Sci Technol Weld Join, 2007; 12: 664
[11] Zhang Z, Zhang H W. J Mater Process Technol. 2009; 209: 241
[12] Zhang Z, Zhang H W. Sci Technol Weld Join. 2007; 12:226
[13] Vijay S, Srdja Z, Kovacevic R. Int J Mach Tool Manuf, 2005; 45: 1577
[14] Buffa G, Fratini L, Pasta S, Shivpuri R. CIRP Annals–Manuf Technol. 2008; 57: 287
[15] Paun F, Azouzi A. Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, 13–17 June 2004, Columbus, USA: Ohio State University. 2004: 1197
[16] Grimvall G. Thermophysical Properties of Materials: Non Metallic Solids. New York: Elsevier, 1999: 243
[17] Parrott J E, Stuckes A D. Thermal Conductivity of Solids, London: Pion, 1975: 156
[18] Zhang Z L, Silvanus J, Li H K, Shi Q Y. Sci Technol Weld Join, 2008; 13: 415
[19] Gallais C, Denquin A. Proc 5th Int Symp on Friction Stir Welding, France: TWI Center, 2004 (CD–ROM)
[20] Shi Q Y, Dickerson T L, Shercliff H R. In: David S A, DebRoy T, Lippold J C, Smartt H B, Vitek J M,eds., Proc 6th Int Conf on Trends n Welding Research, Pine Mountain: ASM International, 2003: 247
[21] Simar A, Beckers J L, Pardoen T, Meester B D. Sci Technol Weld Join, 2006; 11(2): 170
[22] Vuyst T, Dealvise L D. Proc 5th Int Symp on Friction Stir Welding, France: TWI Center, 2004 (CD–ROM)
[23] WC S. Numrical Analysis for Heat Transfer in elding Process. Harbin: Harbin Institute of Technology Press, 1990: 95
(武传松. 焊接热过程数值分析. 哈尔滨: 哈尔滨工业大学出版社, 1990: 95)
[24] Help Documentation of ABAQUS 6.5·ABAQUS Company, USA. 2004
[25] Yan D Y, Shi Q Y, Wu A P, Silvanus J, Liu Y, Zhang Z L. Acta Metall Sin. 2009; 45: 183
(鄢东洋, 史清宇, 吴爱萍, Juergen Silvanus, 刘园, 张增磊. 金属学报. 2009; 45: 183)

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[7] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[10] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[11] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[12] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[13] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[14] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[15] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.