Please wait a minute...
金属学报  2009, Vol. 45 Issue (2): 129-136    
  论文 本期目录 | 过刊浏览 |
Al薄膜纳米压痕过程的多尺度模拟
黎军顽1;倪玉山1;林逸汉1;罗诚1;江五贵2
1.复旦大学力学与工程科学系; 上海 200433
2.Faculty of Built Environment and Engineering; Queensland University of Technology; Brisbane QLD4001; Australia  
MULTISCALE SIMULATION OF NANOINDENTATION ON Al THIN FILM
LI Junwan1;  NI Yushan1;  LIN Yihan1;  LUO Cheng1; JIANG Wugui2
1.Department of Mechanics and Engineering Science; Fudan University; Shanghai 200433
2.Faculty of Built Environment and Engineering; Queensland University of Technology; Brisbane QLD4001; Australia
引用本文:

黎军顽 倪玉山 林逸汉 罗诚 江五贵. Al薄膜纳米压痕过程的多尺度模拟[J]. 金属学报, 2009, 45(2): 129-136.
, , , , . MULTISCALE SIMULATION OF NANOINDENTATION ON Al THIN FILM[J]. Acta Metall Sin, 2009, 45(2): 129-136.

全文: PDF(4305 KB)  
摘要: 

采用多尺度准连续介质法分别模拟无缺陷和具有初始缺陷两种状态下, 单晶Al薄膜纳米压痕初始塑性变形过程, 得到载荷--位移响应曲线和应变能--位移变化曲线. 研究了初始缺陷对纳米压痕过程中位错形核与发射、Peierls应力以及位错发射临界载荷的影响. 结果表明, 在整个纳米压痕过程中出现了多次位错形核与发射现象, 初始缺陷对第1和第3对位错的形核与发射影响较小, 而对第2对位错的形核与发射具有明显的推迟作用, 并伴随有裂纹扩展现象; 由于初始缺陷引起薄膜材料内部严重的晶格畸变, 导致系统应变能和位错运动的Peierls应力增加; 裂纹扩展前, 发射第2对位错需要的临界载荷增加, 裂纹失稳后, 位错发射需要的临界载荷下降. 模拟获得的纳米硬度和Peierls应力与实验结果吻合.

关键词 Al薄膜 纳米压痕 多尺度 准连续介质法 初始缺陷    
Abstract

In order to study the early stages of plastic deformation with initial defect under the action of an indenter, the nanoindentation processes of the single crystal aluminum thin film were simulated using the quasicontinuum method. The load vs displacement response curves and strain energy vs displacement curves of the single crystal aluminum thin film with initial defect and defect--free were presented, respectively. The nanoindentation processes under influences of the initial defect were investigated about dislocation nucleation, dislocation emission, Peierls stress and load necessary for dislocation emission. The results demonstrate that the load vs displacement response curves experience many times abrupt drops with the emission of dislocations beneath the indenter. The initial defect is found to be insignificant on nucleation and emission of the 1st and 3rd dislocation dipoles, but has a distinct effect on the 2nd dislocation dipole. The nucleation and emission of the 2nd dislocation dipole is postponed obviously because of the effect of initial defect, and then crack propagation is accompanied. The strain energy of single crystal aluminum thin film and Peierls stress of dislocation dipole beneath the indenter increase with deformation processes due to the severe lattice distortion in the thin film. Before the cleavage occurs, the load necessary for the 2nd dislocation dipole nucleation and emission increases in nanoindentation with initial defect, on the contrary, it decreases after the cleavage occurred. The nanohardness and Peierls stress in this simulation show a good agreement with relevant theoretical and experimental results.

Key wordsAl film    nanoindentation    multiscale    quasicontinuum method    initial defect
收稿日期: 2008-07-20     
ZTFLH: 

TB383

 
基金资助:

国家自然科学基金资助项目10576010

作者简介: 黎军顽, 男, 1980年生, 博士生

[1] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1564
[2] Li X D, Bhushan B. Mater Charact, 2002; 48: 11
[3] Bamber M J, Cooke K E, Mann A B, Derby B. Thin Solid Films, 2001; 399: 299
[4] Bhushan B, Koinkar V N. Appl Phys Lett, 1994; 64: 1653
[5] Chen J, Bull S J. Thin Solid Films, 2006; 494: 1
[6] Sangwal K, Gorostiza P, Sanz F. Surf Sci, 2000; 446: 314
[7] Zimmerman J A, Kelchner C L, Klein P A, Hamilton J C, Foiles S M. Phys Rev Lett, 2001; 87: 165507
[8] Shankar R M. Appl Phys Lett, 2007; 90: 171924
[9] Kiely J D, Hwang R Q, Houston J E. Phys Rev Lett, 1998;81: 4424
[10] Yang B, Vehoff H. Acta Mater, 2007; 55: 849
[11] Soifer Y M, Verdyan A, Kazakevich M, Rabkin E. Scr Mater, 2002; 47: 799
[12] Liu Y, Varghese S, Ma J, Yoshino M, Lu H, Komanduri R. Int J Plast, 2008; 24: 1990
[13] Kiely J D, Houston J E. Phys Rev, 1998; 19B: 12588
[14] Phillips R, Rodney D, Shenoy V, Tadmor E, Ortiz M. Modell Simul Mater Sci Eng, 1999; 7: 769
[15] Shenoy V B, Phillips R, Tadmor E B. J Mech Phys Solids,2000; 48: 649
[16] Ni Y S, Wang H T. Chin Q Mech, 2005; 26: 366
(倪玉山, 王华滔.力学季刊, 2005; 26: 366)
[17] Tadmor E B, Miller R, Phillips R. J Mater Res, 1999; 14:2233
[18] Shan D, Yuan L, Guo B. Mater Sci Eng, 2005; A412: 264
[19] Iglesias R A, Leiva E P. Acta Mater, 2006; 54: 2655
[20] Li J W, Jiang W G. Acta Metall Sin, 2007; 43: 851
(黎军顽, 江五贵.金属学报, 2007; 43: 851)
[21] Jiang W G, Li J W, Su J J, Tang J L. Acta Mech Solida Sin, 2007; 28: 375
(江五贵, 黎军顽, 苏建君, 汤井伦.固体力学学报, 2007; 28:375)
[22] Ni Y S, Wang H T. Chin J Mech Eng, 2007; 43: 101
(倪玉山, 王华滔.机械工程学报, 2007; 43: 101)
[23] Tadmor E B, Hai S. J Mech Phys Solids, 2003; 51: 765
[24] Miller R, Ortiz M, Phillips R, Shenoy V, Tadmor E B. Eng Fract Mech, 1998; 61: 427
[25] Gannepalli A, Mallapragada S K. Phys Rev, 2002; 66B:104103
[26] Jarausch K F, Kiely J D, Houston J E, Russell P E. J Mater Res, 2000; 15: 1693
[27] Smith R, Christopher D, Kenny S D, Richter A, Wolf B. Phys Rev, 2003; 67B: 245405
[28] Van Vliet K J, Li J, Zhu T, Choi Y J, Yip S, Suresh S. Solid Mech Its Appl, 2004; 115: 203
[29] Kelchner C L, Plimpton S J, Hamilton J C. Phys Rev, 1998; 58B: 11085
[30] Tadmor E B. PhD Thesis, Brown University, Providence, Rhode Island, 1996
[31] Tadmor E B, Ortiz M, Phillips R. Philos Mag, 1996; 73A: 1529
[32] Tadmor E B, Phillips R, Ortiz M. Langmuir, 1996; 12: 4529
[33] Shenoy V B, Miller R, Tadmor E B, Rodney D, Phillips R, Ortiz M. J Mech Phys Solids, 1999; 47: 611
[34] Ercolessi F, Adams J B. Europhys Lett, 1994; 28: 538
[35] Minor A M, Lilleodden E T, Stach E A, Morris J W. J Mater Res, 2004; 19: 176
[36] Hirth J P, Lothe J. Theory of Dislocations. New York: John Wiley and Sons, 1982: 757
[37] Kosugi T, Kino T. Mater Sci Eng, 1993; A164: 368

[1] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[3] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[4] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[5] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[6] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[7] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[8] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[9] 刘兴军, 陈悦超, 卢勇, 韩佳甲, 许伟伟, 郭毅慧, 于金鑫, 魏振帮, 王翠萍. 新型钴基高温合金多尺度设计的研究现状与展望[J]. 金属学报, 2020, 56(1): 1-20.
[10] 周丽,张鹏飞,王全兆,肖伯律,马宗义,于涛. B4C/6061Al复合材料热压缩断裂行为的多尺度研究[J]. 金属学报, 2019, 55(7): 911-918.
[11] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[12] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[13] 徐宏扬,柯海波,黄火根,张培,张鹏国,刘天伟. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017, 53(7): 817-823.
[14] 刘积厚,赵洪运,李卓霖,宋晓国,董红杰,赵一璇,冯吉才. Cu/Sn/Cu超声-TLP接头的显微组织与力学性能[J]. 金属学报, 2017, 53(2): 227-232.
[15] 陈育秋, 祖亚培, 宫骏, 孙超, 王晨. Al薄膜对玻璃纤维增强树脂基复合材料电磁性能的影响[J]. 金属学报, 2017, 53(11): 1511-1520.