Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1185-1189    
  论文 本期目录 | 过刊浏览 |
第一性原理计算TiN(111)/BN/TiN(111)界面的电子结构、成键特性和结合强度
牛建钢; 王宝军; 王翠表; 田 晓
河北大学质量技术监督学院; 保定 071001
FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE, BONDING CHARACTERISTIC AND BONDING STRENGTH OF TiN(111)/BN/TiN(111) INTERFACE
NIU Jiangang; WANG Baojun; WANG Cuibiao; TIAN Xiao
College of Quality and Technical Supervision; Hebei University; Baoding 071001
引用本文:

牛建钢 王宝军 王翠表 田晓. 第一性原理计算TiN(111)/BN/TiN(111)界面的电子结构、成键特性和结合强度[J]. 金属学报, 2009, 45(10): 1185-1189.
. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE, BONDING CHARACTERISTIC AND BONDING STRENGTH OF TiN(111)/BN/TiN(111) INTERFACE[J]. Acta Metall Sin, 2009, 45(10): 1185-1189.

全文: PDF(684 KB)  
摘要: 

利用第一性原理计算方法研究了TiN(111)/BN/TiN(111)界面的16个理论界面构型.计算结果表明, 最稳定界面构型为top-top-BN 构型, 此构型中B原子只与周围N原子成键, 为四面体配位. 同时计算了top-top-BN构型的电子结构和成键特性以及界面结合强度, 结果表明, top-top-BN构型界面上的键为较强共价键,
其界面结合强度比TiN(111)板层或TiN块体材料的(111)晶面间的结合强度大, 说明此构型具有强界面特征.

关键词 纳米复合薄膜 氮化物 界面 第一性原理    
Abstract

The nanocomposite 'nc–TiN/a–BN' as a representation of the family of superhard nitride–based nanocomposites, which is a nanocomposite thin film material, exhibits a significant hardness enhancement as compared with the pure constituents. In this paper, first–principles calculations were performed to investigate the role of interfaces in the nanocomposite 'nc–TiN/a–BN', to which less attention has been paid up to now. In order to determine theoretically the stable interface configuration in 'nc–TiN/a–BN', 16 possible theoretical TiN(111)/BN/TiN(111) sandwich interface cnfigurations have been constructed based on the stucture characteristic of 'nc–TiN/a–BN'. It is found in this calculation that the mst favorable interface configuration istop–top–BN, which is closely related to each B atom covalently bonding to its tetahedrally coordinated N atoms in it. ts electronic structure is calculated. The calculated results show that the bnds at the interface in 'top–top–BN'configuration are covalent. Its interface bonding strength is higher than that between two 111 crystalline planes in slab TiN or bulk TiN.

Key wordsnanocomposite film    nitride    interface    first principle
收稿日期: 2009-04-08     
ZTFLH: 

TG146

 
基金资助:

河北省教育厅科研计划资助项目z2008304

作者简介: 牛建钢, 男, 1976年生, 讲师, 硕士生
[1] Zhao H Y, Fan Q L, Song L X, Shi E W, Hu X F. J Inorg Mater, 2004; 19: 9 (赵红雨, 范秋林, 宋力昕, 施尔畏, 胡行方. 无机材料学报, 2004; 19: 9) [2] Veprek S, Veprek–Heijman M G J, Karvankova P, Prochazka J. Thin Solid Films, 2005; 476: 1 [3] Ma D Y, Wang X, Ma S L, Xu K W. Acta Metall Sin, 2003; 39: 1047 (马大衍, 王昕, 马胜利, 徐可为. 金属学报, 2003; 39: 1047) [4] Veprek S, Niederhofer A, Moto K, Bolom T, Mannling H D, Nesladek P, Dollinger G, Bergmaier A. Surf Coat Technol, 2000; 133–134: 152 [5] Karvankova P, Veprek–Heijman M G J, Zawrah M F, Veprek S. Thin Solid Films, 2004; 467: 133 [6] Karvankova P, Veprek–Heijman M G J, Zindulky O, Bergmaier A, Veprek S. Surf Coat Technol, 2003; 163–164:149 [7] Karvankova P, Veprek–Heijman M G J, Azinovic D, Veprek S. Surf Coat Technol, 2006; 200: 2978 [8] Veprek S, Veprek–Heijman M G J. Surf Coat Technol, 2007; 201: 6064 [9] Hao S Q, Delley B, Stampf C. Phys Rev, 2006; 74B: 035402 [10] Ma D Y, Ma S L, Xu K W, Veprek S. Acta Metall Sin, 2004; 40: 1037 (马大衍, 马胜利, 徐可为, Veprek S. 金属学报, 2004; 40: 1037) [11] Kong M, Hu X P, Dong Y S, Li G Y, Gu M Y. Acta Phys Sin, 2005; 54: 3774 (孔明, 胡晓萍, 董云杉, 李戈扬, 顾明元. 物理学报, 2005; 54: 3774) [12] Hultman L, Bareno J, Flink A, Soderberg H, Larsson K, Petrova V, Oden M, Greene J E, Petrov I. Phys Rev, 2007; 75B: 155437 [13] Hao S Q, Delley B, Veprek S, Stampf C. Phys Rev Lett, 2006; 97: 086102 [14] Gall D, Kodambaka S, Wall M A, Petrov I, Greene J E. J Appl Phys, 2003; 93: 9086 [15] Segall M D, Lindan P J D, Probert M J. J Phys Condens Matter, 2002; 14: 2717
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[4] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[5] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[6] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[7] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[8] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[9] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
[10] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[11] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[12] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[13] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[14] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[15] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.