Please wait a minute...
金属学报  2006, Vol. 42 Issue (9): 965-970     
  论文 本期目录 | 过刊浏览 |
加载速率对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响
许泽建;李玉龙; 李娜;刘元镛
西北工业大学航空学院
EFFECT OF LOADING RATE ON MODE I DYNAMIC FRACTURE TOUGHNESS OF HIGH STRENGTH STEELS 40Cr AND 30CrMnSiNi2A
XU Zejian; LI Yulong; LI Na; LIU Yuanyong
西北工业大学航空学院
引用本文:

许泽建; 李玉龙; 李娜; 刘元镛 . 加载速率对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响[J]. 金属学报, 2006, 42(9): 965-970 .
, , , . EFFECT OF LOADING RATE ON MODE I DYNAMIC FRACTURE TOUGHNESS OF HIGH STRENGTH STEELS 40Cr AND 30CrMnSiNi2A[J]. Acta Metall Sin, 2006, 42(9): 965-970 .

全文: PDF(326 KB)  
摘要: 采用实验-数值方法对40Cr和30CrMnSiNi2A两种高强钢三点弯曲试样在不同加载速率的冲击载荷作用下进行了动态断裂韧性的测试, 并对其率相关性进行研究. 实验在Hopkinson压杆系统上完成, 试样的起裂时间采用应变片法测得. 结合有限元三维动态模拟, 得到了不同加载速率下试样动态应力强度因子的时间历程并由实测的起裂时间确定材料动态断裂韧性. 结果表明, 在本工作加载速率范围内(10 6 MPa•m 1/2/s),40Cr钢为解理型断裂, 其动态断裂韧性随加载速率增加的变化趋势不明显;而30CrMnSiNi2A钢则在较大程度上表现为延性断裂的特征, 其动态断裂韧性随加载速率的增加呈明显上升趋势. 并对上述结果进行了宏观和微观机理分析.
关键词 高强钢加载率动态断裂韧性    
Abstract:ModeⅠdynamic fracture toughnesses KId for high strength steels, 40Cr and 30CrMnSiNi2A, subjected to impact loading with different loading rates were measured using an experimental-numerical hybrid method. The sensitivity of KId to loading rate for the steels were investigated. The tests were performed on three point bending specimens with Hopkinson pressure bar and the time of crack initiation was determined by strain gauge. With 3-D transient finite element analysis, the dynamic stress intensity factor histories under different loading rates were obtained and the dynamic fracture toughnesses were determined by fracture initiation time. The results show that within the loading rate range (10 6 MPa•m 1/2/s), 40Cr steel specimens failed by cleavage fracture, and the KId tendency is not clear with increasing loading rate. 30CrMnSiNi2A steel specimens failed to a large extent by ductile fracture and the KId value increases obviously with loading rate. Mechanisms of the results were discussed macroscopically and microcosmically.
Key wordshigh strength steel    loading rate    dynamic fracture toughness
收稿日期: 2006-01-16     
ZTFLH:  O347.3  
[1]Fan T Y.Introduction To Dynamic Fracture Mechanics.Beijing:Beijing Institute of Technology Press,1990:51(范天佑.断裂动力学引论.北京:北京理工大学出版社,1990:51)
[2]Zhao Y P.Adv Mech,1996;26:362(赵亚溥.力学进展,1996;26:362)
[3]Liu R T,Zhang X X,Jiang F C,Ou G B.J Harbin Eng Univ,2000;21:18(刘瑞堂,张晓欣,姜风春,欧贵宝.哈尔滨工程大学学报,2000;21:18)
[4]Zheng J,Wang Z P,Duan Z P.Adv Mech,1994;24:459(郑坚,王泽平,段祝平.力学进展,1994;24:459)
[5]Yu J L.Mech Eng,1992;14:7(虞吉林.力学与实践,1992;14:7)
[6]Rokach I V.Fatigue Fract Eng Mater Struct,1998;21:1007
[7]Nakano M,Kishida K.Eng Fract Mech,1990;36:515
[8]Li Y L.Rare Met Mater Eng,1993;22(5):12(李玉龙.稀有金属材料与工程,1993;22(5):12)
[9]Li Y L,Guo W G,Jia D X,Liu Y Y.Acta Mech Solid Sin,1995;8:210
[10]Li Y L,Liu Y Y.J Comput Struct Mech Appl,1995;12(1):110(李玉龙,刘元镛.计算结构力学及应用,1995;12(1):110)
[11]Guo W G.,Li Y L,Liu Y Y.Theory Appl Fract Mech, 1997;26:29
[12]Ruiz C,Mines R A W.Int J Fract,1985;29:101
[13]Li Y L,Liu Y Y.Theory and Test Research on Dynamic Fracture Toughness and Dynamic Crack Propagation.Xi'an:Northwest Polytechnical University Press,1995:108(李玉龙,刘元镛.动态起裂韧性及动态裂纹扩展的理论与实验研究.西安:西北工业大学出版社,1995:108)
[14]Chen E P,Sih G C.In:Sih G C,ed.,Elastodynamic Crack Problems,Leyden:Noordhoff Publishing,1976:1
[15]Xu Z J,Li Y L,Liu Y Y,Luo J R,Chen Y Z.Acta M etall Sin,2006;42:635(许泽建,李玉龙,刘元镛,罗景润,陈裕泽.金属学报,2006;42:635)
[16]Cui Y X,Wang C L.Metal Failure Surface Analysis.Ha erbin:Haxbin Institute of Technology Press,1998:34(崔约贤,王长利.金属断口分析.哈尔滨:哈尔滨工业大学出版社,1998:34)
[17]Zhang D,Zhong P D,Tao C H,Lei Z S.Failure Analysis.Beijing:National Defence Industry Press,1998:87(张栋,钟培道,陶春虎,雷祖圣.失效分析.北京:国防工业出版社,2004:87)
[18]Campbell J D,Ferguson W G.Philos Mag,1970;21:63
[19]Wu Y S,Chen Y J,Zeng C H.Microcosmic Fracture Mechanics.Xi'an:603th Research Institute of Ministry of Aeronautic Industry,1987:254(伍义生,陈一坚,曾春华.微观断裂力学.西安:航空工业部第六零三研究所,1987:254)
[1] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[2] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[3] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[4] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[5] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[6] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[7] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[8] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[9] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[10] 张清东,林潇,曹强,卢兴福,张勃洋,胡树山. 冷轧高强钢板淬火过程板形瓢曲缺陷演变规律研究[J]. 金属学报, 2017, 53(4): 385-396.
[11] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
[12] 范林,丁康康,郭为民,张彭辉,许立坤. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响*[J]. 金属学报, 2016, 52(6): 679-688.
[13] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[14] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响*[J]. 金属学报, 2015, 51(5): 537-544.
[15] 高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响[J]. 金属学报, 2015, 51(1): 21-30.