Please wait a minute...
金属学报  2006, Vol. 42 Issue (6): 572-576     
  论文 本期目录 | 过刊浏览 |
低碳微合金钢中晶内和晶界铁素体长大动力学
吴开明
武汉科技大学
Growth Kinetics of Intragranular Ferrite in a Low Carbon Microalloyed Steel
WU Kaiming
Ministry of Education; Department of Applied Physics; Wuhan University of Science and Technology; Wuhan 430081
引用本文:

吴开明 . 低碳微合金钢中晶内和晶界铁素体长大动力学[J]. 金属学报, 2006, 42(6): 572-576 .
. Growth Kinetics of Intragranular Ferrite in a Low Carbon Microalloyed Steel[J]. Acta Metall Sin, 2006, 42(6): 572-576 .

全文: PDF(289 KB)  
摘要: 利用光学显微镜和晶体长大动力学理论对低碳微合金钢中晶内和晶界 铁素体的长大动力学进行了实验测定和理论计算与分析. 在实验温度范围 (650-750 ℃)内, 铁素体首先在晶界上形成, 在晶内夹杂物上形成较晚. 晶 界与晶内铁素体形成的过冷度相差40 ℃以上, 铁素体在晶内夹杂物上形成比在 晶界上形成需要更大的过冷度. 晶内铁素体长大速率常数的实测值小于计算值, 晶界铁素体长大速率常数的实测值则大于计算值.
关键词 微合金钢晶内铁素体晶界铁素体    
Abstract:The growth kinetics of ferrite formed at intragranular inclusions and austenite grain boundaries in a low carbon microalloyed steel were analyzed by optical observation and theoretical calculation. The formation of intragranular ferrite on inclusions was later than that of ferrite allotriomorphs at austenite grain boundaries within the temperature range of 650-750℃. The undercooling for the formation of ferrite on inclusions is 40℃ larger than that at austenite grain boundaries. For the former the measured growth rate constant was smaller than that calculated, and for the latter the measured growth rate constant was larger than that calculated.
Key wordsmicroalloyed steel    intragranular ferrite    grain boundary ferrite
收稿日期: 2005-08-08     
ZTFLH:  TG111,TG142  
[1] Mabuchi H, Uemori R, Fujioka M. ISIJ Int, 1996; 36: 80
[2] Gregg J M, Badeshia H K D H. Ada Mater, 1997; 45: 739
[3] Shim J-H, Cho Y W, Chung S H, Shim J-D, Lee D N. Acta Mater, 1999; 47: 2751
[4] Shim J-H, Oh Y-J, Suh J Y, Cho Y W, Shim J-D, Byun J-S, Lee D N. Acta Mater, 2001; 49: 2115
[5] Zhang S, Hattori N, Enomoto M, Tarui T. ISIJ Int, 1996; 36: 1301
[6] Lee T-K, Kim H-J, Kang B J, Hwang S K. ISIJ Int, 2000; 40: 1260
[7] Madariaga I, Romero S L, Gutierrez I. Metall Mater Trans, 1998; 29A: 1003
[8] Jones S J, Badeshia H K D H. Metall Mater Trans, 1997; 28A: 2005
[9] Bhadeshia H K D H. Bainite in Steels. 2nd edition, London, UK: IOM Comunications Ltd, 2001: 241
[10] Wu K M, Li Z G, He X L, Zhang L Q, Fang A H. ISIJ Int, 2006; 46: 161
[11] Kinsman K R, Aaronson H I. Metall Trans, 1973; 4: 959
[12] Atkinson C, Aaron H B, Kinsman K R, Aaronson H I. Metall Trans, 1973; 4: 783
[13] Bradley J R, Rigsbee J M, Aaronson H I. Metall Trans, 1977; 8A: 323
[14] Bradley J R, Aaronson H I, Russell K C, Johnson W C. Metall Trans, 1977; 8A: 1955
[15] Bradley J R, Aaronson H I. Metall Trans, 1981; 12A: 1729
[16] Shiflet G J, Aaronson H I. Metall Trans, 1990; 21A: 1413
[17] He K, Edmonds D V. Mater Sci Technol, 2002; 18: 289
[18] Zener C J. Appl Phys, 1949; 20: 950
[19] Foo E H, Lupis C H P. Acta Metall, 1973; 21: 1409
[20] Enomoto M, Aaronson H I. CALPHAD, 1985; 9: 43
[21] Tanaka T, Aaronson H I, Enomoto M. Metall Mater Trans, 1995; 26A: 535
[22] Enomoto M. Phase Transformations in Metals. Tokyo: Uchida Rokakuho Publishing Co. Ltd, 2000: 251
[23] Sekerka R F, Wang S L. In: Aaronson H I ed., Lectures on the Theory of Phase Transformations, Warrendale, PA: TMS-AIME, 1999: 231
[24] Enomoto M. Phase Transformations in Metals. Tokyo: Uchida Rokakuho Publishing Co. Ltd, 2000: 74
[25] Aaron H B, Aaronson H I. Acta Metall, 1968; 16: 789
[26] Ricks R A, Howell P R, Barritte G S. J Mater Sci, 1982; 17: 732
[27] Boswell P G., Kinsman K R, Shiflet G J, Aaronson H I. Mechanical Properties and Phase Transformations in Engineering Materials, TMS Annual Meeting in New Orleans Louisiana, Warrendale, PA: AIME, 1986: 445
[28] Kinsman K R, Aaronson H I. Transformation and Hard-enability in Steels, Ann Arbor, Michigan: Climax Molybdenum Co., 1967: 39
[29] Ramasubrananian P V, Stein D F. Metall Trans, 1973; 4: 1735
[30] Bradley J R, Aaronson H I, Russell K C, Johnson W C. Metall Trans, 1977; 8A: 19555
[1] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[2] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[3] 李晓林, 崔阳, 肖宝亮, 张大伟, 金钊, 程政. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368-1376.
[4] 何仙灵,杨庚蔚,毛新平,余驰斌,达传李,甘晓龙. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017, 53(6): 648-656.
[5] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[6] 李小琳,王昭东,邓想涛,张雨佳,类承帅,王国栋. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响*[J]. 金属学报, 2015, 51(7): 784-790.
[7] 李小琳, 王昭东. 含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为[J]. 金属学报, 2015, 51(4): 417-424.
[8] 张可, 雍岐龙, 孙新军, 李昭东, 赵培林, 陈守东. 回火温度对高Ti微合金直接淬火高强钢组织及性能的影响*[J]. 金属学报, 2014, 50(8): 913-920.
[9] 陈俊, 吕梦阳, 唐帅, 刘振宇, 王国栋. V-Ti微合金钢的组织性能及相间析出行为*[J]. 金属学报, 2014, 50(5): 524-530.
[10] 王晓南,邸洪双,杜林秀. 形变及冷却速率对热轧超高强汽车钢板中纳米析出的影响[J]. 金属学报, 2012, 48(5): 621-628.
[11] 陈俊, 唐帅,刘振宇,王国栋. 冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响[J]. 金属学报, 2012, 48(4): 441-449.
[12] 孙超凡 蔡庆伍 武会宾 毛红艳 陈宏振. 轧制工艺对铁素体基Ti-Mo微合金钢纳米尺度碳氮化物析出行为的影响[J]. 金属学报, 2012, 48(12): 1415-1421.
[13] 刘文庆 朱晓勇 钟柳明 王晓姣 刘庆冬. 微合金钢中第二相临界转变尺寸的研究[J]. 金属学报, 2011, 47(8): 1094-1098.
[14] 贾斌 彭艳. 铌微合金钢高温变形的本构关系[J]. 金属学报, 2011, 47(4): 507-512.
[15] 王长军 雍岐龙 孙新军 毛新平 李昭东 雍兮. Ti和Mn含量对CSP工艺Ti微合金钢析出特征与强化机理的影响[J]. 金属学报, 2011, 47(12): 1541-1549.