Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 648-656    DOI: 10.11900/0412.1961.2016.00437
  本期目录 | 过刊浏览 |
Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响
何仙灵1,杨庚蔚1(),毛新平1,2,余驰斌1,达传李1,甘晓龙1,2
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 4300812 武汉钢铁(集团)公司研究院 武汉 430083
Effect of Nb on the Continuous Cooling Transformation Rule and Microstructure, Mechanical Properties of Ti-Mo Bearing Microalloyed Steel
Xianling HE1,Gengwei YANG1(),Xinping MAO1,2,Chibin YU1,Chuanli DA1,Xiaolong GAN1,2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Research and Development Institute, Wuhan Iron and Steel (Group) Co., Ltd., Wuhan 430083, China
引用本文:

何仙灵,杨庚蔚,毛新平,余驰斌,达传李,甘晓龙. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017, 53(6): 648-656.
Xianling HE, Gengwei YANG, Xinping MAO, Chibin YU, Chuanli DA, Xiaolong GAN. Effect of Nb on the Continuous Cooling Transformation Rule and Microstructure, Mechanical Properties of Ti-Mo Bearing Microalloyed Steel[J]. Acta Metall Sin, 2017, 53(6): 648-656.

全文: PDF(10892 KB)   HTML
摘要: 

利用热模拟试验机、SEM、HRTEM及EDS研究了Ti-Mo和Ti-Mo-Nb低碳微合金钢的连续冷却转变规律,探讨了Nb对Ti-Mo微合金钢组织及性能的影响。结果表明:Nb元素能够提高钢的Ac1Ac3温度,降低冷却过程中奥氏体的分解温度,缩小铁素体-珠光体相区,使贝氏体相区向左下方移动。此外,Nb的添加能够细化Ti-Mo-Nb微合金钢中的组织,提高硬度。利用HRTEM对冷速为50 ℃/s的样品进行分析,发现:Ti-Mo和Ti-Mo-Nb微合金钢中均存在少量应变诱导析出的碳化物,分别为(Ti, Mo)C和 (Ti, Nb, Mo)C粒子,呈随机分布。2种析出物均为NaCl型结构,其晶格常数分别为0.432和0.436 nm,平均粒径分别为12.11和8.69 nm。Ti-Mo-Nb微合金钢中析出相体积分数更多,尺寸更小,是其组织细化、硬度提高的主要原因。

关键词 钛微合金钢CCT曲线Nb纳米析出硬度    
Abstract

In recent years, with the fast development of automotive industry, more and more attention has been focused on developing high strength automobile steels with excellent formability. The microalloying elements, such as Nb, Ti, Mo, which can facilitate grain refinement and precipitation hardening, were added into steels to achieve high strength and good formability. The Ti-Mo and Ti-Mo-Nb microalloyed high strength ferritic steel were developed. In this work, the continuous cooling transformation curves (CCT) of Ti-Mo and Ti-Mo-Nb steels were obtained. And the effect of Nb on the microstructure and mechanical properties of Ti-Mo low carbon microalloyed steel was investigated by means of SEM, HRTEM and EDS. The results showed that Nb could raise the Ac1 and Ac3 temperatures, and restrain the ferrite-pearlite and bainite transformation. Moreover, Nb could also refine the microstructure and harden the matrix of steel which attributed to the strain-induced precipitation of nano-sized (Ti, Nb, Mo)C particles identified by HRTEM and EDS. It was also found that the strain-induced precipitation of (Ti, Mo)C was existed in the Ti-Mo steel. And both of (Ti, Mo)C and (Ti, Nb, Mo)C particles were NaCl type structure. The lattice constants/the average particle sizes of (Ti, Mo)C and (Ti, Nb, Mo)C were 0.432 nm and 0.436 nm / 12.11 nm and 8.69 nm, respectively.

Key wordsTi microalloyed steel    CCT curve    Nb    nano-sized precipitation    hardness
收稿日期: 2016-10-05     
基金资助:中国博士后科学基金项目No.2014M562072
Steel C Si Mn Ti Mo Nb Cr N Fe
Ti-Mo 0.06 0.070 1.44 0.097 0.28 - 0.21 0.0035 Bal.
Ti-Nb-Mo 0.06 0.088 1.46 0.100 0.29 0.074 0.20 0.0083 Bal.
表1  微合金钢的化学成分
图1  测定动态连续冷却转变(CCT)曲线示意图
图2  Ti-Mo钢和Ti-Mo-Nb钢的温度-膨胀量曲线
图3  Ti-Mo钢经不同冷速冷却后的SEM像
图4  Ti-Mo-Nb钢经不同冷速冷却后的SEM像
图5  Ti-Mo和Ti-Mo-Nb钢的动态CCT曲线
图6  Ti-Mo和Ti-Mo-Nb钢在不同冷速下冷却后的硬度
图7  Ti-Mo和Ti-Mo-Nb钢中析出相体积分数随温度的变化
图8  冷速为50 ℃/s冷却时Ti-Mo和Ti-Mo-Nb钢中的析出相形貌及EDS谱
图9  Ti-Mo钢与Ti-Mo-Nb钢析出相的HRTEM像和Fourier变换谱
图10  Ti-Mo 和Ti-Mo-Nb钢在冷速为50 ℃/s时的析出物尺寸分布
图11  Ti-Mo和Ti-Mo-Nb钢变形后奥氏体晶界图
[1] Shimizu T, Funakawa Y, Kaneko S.High strength steel sheets for automobile suspension and chassis use-high strength hot-rolled steel sheets with excellent press formability and durability for critical safety parts[J]. JFE Tech. Rep., 2004, 4: 25
[2] Jha G, Das S, Sinha S, et al.Design and development of precipitate strengthened advanced high strength steel for automotive application[J]. Mater. Sci. Eng., 2013, A561: 394
[3] Funakawa Y. Mechanical properties of ultra fine particle dispersion strengthened ferritic steel [J]. Mater. Sci. Forum. Trans. Tech. Publications, 2012, 706-709: 2096
[4] Wang W, Shan Y Y, Yang K.Effect of acicular ferrite microstructure composition on strength of X65 pipeline steel[J]. Acta Metall. Sin., 2007, 43: 578
[4] (王伟, 单以银, 杨柯. 超低碳微合金管线钢中针状铁素体的组成对强度的影响[J]. 金属学报, 2007, 43: 578)
[5] Mao X P, Chen Q L, Sun X J.Metallurgical interpretation on grain refinement and synergistic effect of Mn and Ti in Ti-microalloyed strip produced by TSCR[J]. J. Iron Steel Res. Int., 2014, 21: 30
[6] Zhang K, Sun X J, Yong Q L, et al.Effect of tempering time on microstructure and mechanical properties of high Ti microalloyed quenched martensitic steel[J]. Acta Metall. Sin., 2015, 51: 553
[6] (张可, 孙新军, 雍岐龙等. 回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响[J]. 金属学报, 2015, 51: 553)
[7] Chen J, Lü M Y, Tang S, et al.Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel[J]. Acta Metall. Sin., 2014, 50: 524
[7] (陈俊, 吕梦阳, 唐帅等. V-Ti微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014, 50: 524)
[8] Kestenbach H J, Campos S S, Morales E V.Role of interphase precipitation in microalloyed hot strip steels[J]. Mater. Sci. Technol., 2006, 22: 615
[9] Yang G W, Sun X J, Yong Q L, et al.Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel[J]. J. Iron Steel Res. Int., 2014, 21: 757
[10] Li X L, Wang Z D.Interphase precipitation behaviors of nanometer-sized carbides in a Nb-Ti-bearing low-carbon microalloyed steel[J]. Acta Metall. Sin., 2015, 51: 417
[10] (李小琳, 王昭东. 含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为[J]. 金属学报, 2015, 51: 417)
[11] Funakawa Y, Shiozaki T, Tomita K, et al.Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ Int., 2004, 44: 1945
[12] Zhang Z Y, Sun X J, Li Z D, et al.Effect of nanometer-sized carbides and grain boundary density on performance of Fe-C-Mo-M(M=Nb, V or Ti) fire resistant steels[J]. Chin. J. Mater. Res., 2015, 29: 269
[12] (张正延, 孙新军, 李昭东等. 纳米级碳化物及小角界面密度对Fe-C-Mo-M (M=Nb、V或Ti)系钢耐火性的影响[J]. 材料研究学报, 2015, 29: 269)
[13] Jang J H, Heo Y U, Lee C H, et al.Interphase precipitation in Ti-Nb and Ti-Nb-Mo bearing steel[J]. Mater. Sci. Technol., 2013, 29: 309
[14] Bu F Z, Wang X M, Chen L, et al.Performance of nanosized carbides precipitation and microstructure evolution in tempering process of Ti-Nb-Mo microalloyed steel[J]. Trans. Mater. Heat Treat., 2015, 36(8): 96
[14] (卜凡征, 王学敏, 陈琳等. Ti-Nb-Mo微合金钢回火过程中纳米碳化物的析出行为及组织演变[J]. 材料热处理学报, 2015, 36(8): 96)
[15] Zhang N.Effect of Nb on microstructure of CFB/M multiphase steel [D]. Beijing: North China Electric Power University (Beijing), 2009
[15] (张楠. Nb对CFB/M复相钢组织的影响[D]. 北京: 华北电力大学(北京), 2009)
[16] Weng Y Q.Microstructure Refinement Theory and Control Technology of Ultrafine Grained Steel [M]. Beijing: Metallurgical Industry Press, 2003: 57
[16] (翁宇庆. 超细晶钢——钢的组织细化理论与控制技术 [M]. 北京: 冶金工业出版社, 2003: 57)
[17] Mecozzi M G, Sietsma J, van der Zwaag S. Analysis of γ→α transformation in a Nb micro-alloyed C-Mn steel by phase field modelling[J]. Acta Mater., 2006, 54: 1431
[18] Liu X F, Jia T, Zhu B Q.Modeling the effect of Nb on austenite→ferrite phase transformation kinetics[J]. J. Northeastern Univ.(Nat. Sci.), 2016, 37: 642
[18] (刘雪峰, 贾涛, 朱本强. Nb对奥氏体→铁素体相变动力学影响的模型[J]. 东北大学学报(自然科学版), 2016, 37: 642)
[19] Bradley J R, Aaronson H I.Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C-X alloys[J]. Metall. Trans., 1981, 12A: 1729
[20] Fossaert C, Rees G, Maurickx T, et al.The effect of niobium on the hardenability of microalloyed austenite[J]. Metall. Mater. Trans., 1995, 26A: 21
[21] Yuan X Q, Liu Z Y, Jiao S H, et al.The onset temperatures of γ to α-phase transformation in hot deformed and non-deformed Nb micro-alloyed steels[J]. ISIJ Int., 2006, 46: 579
[22] Chen C Y, Yen H W, Kao F H, et al.Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides[J]. Mater. Sci. Eng., 2009, A499: 162
[23] Duan X G, Cai Q W, Wu H B.Ti-Mo ferrite matrix micro-alloy steel with nanometer-sized precipitates[J]. Acta Metall. Sin., 2011, 47: 251
[23] (段修刚, 蔡庆伍, 武会宾. Ti-Mo全铁素体基微合金高强钢纳米尺度析出相[J]. 金属学报, 2011, 47: 251)
[24] Yong Q L.Secondary Phases in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 27
[24] (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 27)
[25] Irvine K J, Pickering F B, Gladman T R.Grain-refined C-Mn steels[J]. J. Iron Steel Inst., 1967, 205: 161
[26] Nordberg H, Aromsson B.Solubility of niobium carbide in austenite[J]. J. Iron Steel Inst., 1968, 206: 1263
[27] Pavlina E J, Speer J G, van Tyne C J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron[J]. Scr. Mater., 2012, 66: 243
[28] Xu Y, Sun M X, Zhou Y L, et al.Precipitation behavior of (Nb, Ti)C in coiling process and its effect on micro-mechanical characteristics of ferrite[J]. Acta Metall. Sin., 2015, 51: 31
[28] (徐洋, 孙明雪, 周砚磊等. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51: 31)
[29] Wu J B, Liu G Q, Wang H.Effect of Nb, Ti and V on the hot deformation behavior of low carbon Nb microalloyed steels[J]. Acta Metall. Sin., 2010, 46: 838
[29] (吴晋彬, 刘国权, 王浩. Nb, Ti和V对含Nb微合金钢热变形行为的影响[J]. 金属学报, 2010, 46: 838)
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[5] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[6] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[7] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[8] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[9] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[11] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[12] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[13] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[14] 王明康, 苑峻豪, 刘宇峰, 王清, 董闯, 张中伟. TiZr-Nb二元合金β结构稳定性和力学性能的影响[J]. 金属学报, 2021, 57(1): 95-102.
[15] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.