Please wait a minute...
金属学报  2005, Vol. 41 Issue (9): 1004-1008     
  论文 本期目录 | 过刊浏览 |
PZT铁电陶瓷的氢致半导体化
黄海友 褚武扬 宿彦京 高克玮 李金许 乔利杰
北京科技大学材料物理系;北京100083
HYDROGEN-INDUCED SEMICONDUCTOR TRANSFORMATION OF PZT FERROELECTRIC CERAMICS
HUANG Haiyou; CHU Wuyang; SU Yanjing; GAO Kewei; LI Jinxu; QIAO Lijie
Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083
引用本文:

黄海友; 褚武扬; 宿彦京; 高克玮; 李金许; 乔利杰 . PZT铁电陶瓷的氢致半导体化[J]. 金属学报, 2005, 41(9): 1004-1008 .
, , , , , . HYDROGEN-INDUCED SEMICONDUCTOR TRANSFORMATION OF PZT FERROELECTRIC CERAMICS[J]. Acta Metall Sin, 2005, 41(9): 1004-1008 .

全文: PDF(208 KB)  
摘要: 研究了锆钛酸铅铁电陶瓷(PZT-5H)的氢致半导体化现象. 结果表明,随试样中氢浓度的升高,漏电电流和载流子浓度升高,电阻率下降,颜色由黄变黑. 即氢能使PZT-5H铁电陶瓷从绝缘体变成n型半导体. 高于Curie点充氢时,能抑制PZT-5H从立方的顺电相向四方的铁电相的转变,室温下铁电性消失. 但室温电解充氢并不抑制相变. 高温除氢后试样的性能及颜色均恢复.
关键词 PZT-5H铁电陶瓷氢致半导体化    
Abstract:Semiconductor transformation of PZT-5H ferroelectric ceramics induced by hydrogen has been investigated. The results showed that the leakage current and carrier concentration increased and the resistivity decreased with increasing hydrogen concentration, and the color of specimen changed from yellow to black. Hydrogen could induce a transition of the insulating PZT-5H ferroelectric ceramics to n-type semiconductor. During charging in H2 at the temperature higher than the Curie point, hydrogen would restrain the phase transformation from cubic to tetragonal, resulting in disappearance of ferroelectricity at room temperature. Charging at room temperature, however, did not change the crystal structure of the tetragonal ferroelectric ceramics. The properties and color of PZT-5H were reinstated after outgassing at high temperature.
Key wordsPZT-5H ferroelectric ceramics    hydrogen    hydrogen-induced semiconductor transformation
收稿日期: 2005-01-18     
ZTFLH:  TG111.6  
[1] Han J P, Ma T P. Appl Phys Lett, 1997; 71: 1267
[2] Behm D A, Felz C T, Hannes R, Pinault S C. J Am Chem, 1989; 72: 2279
[3] Ikarashi N. Appl Phys Lett, 1998; 73: 1955
[4] Aggarwal S, Perusse S R, Tipton C W, Ramesh R, Drew H D, Venkatesan T, Romero D B, Podobedov V B, Weber A. Appl Phys Lett, 1998; 73: 1973
[5] Tamura T, Matsuura K, Ashida H, Kondo K, Otani S. Appl Phys Lett, 1999; 74: 3395
[6] Aggarwal S, Perusse S R, Nagaraj B, Ramesh R. Appl Phys Lett, 1999; 74: 3023
[7] Evans J T, Boyer L L, Velasquez G, Ramesh R, Aggarwal S, Keramidas V. Jpn J Appl Phys, 1999; 38B: 5361
[8] Rajopadhye N R, Bhoraskar S V, Badrinarayan S, Sinha A P B. J Mater Sci, 1988; 23: 2631
[9] Chen W P, Li L T, Wang Y, Gui Z L. J Mater Res, 1998; 13: 1110
[10] Peng X, Su Y J, Gao K W, Qiao L J, Chu W Y. Mater Lett, 2004; 58: 2073
[11] Shirasaki S, Yamamura H, Haneda H, Kakegawa K, Moori J. J Chem Phys, 1980; 73: 4640
[12] Harman G G. Phys Rev, 1967; 106: 1358
[1] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[2] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[3] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[4] 肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
[5] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[6] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[7] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[8] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[9] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[10] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[11] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[12] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[13] 丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
[14] 王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.
[15] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.