Please wait a minute...
金属学报  2005, Vol. 41 Issue (3): 326-332     
  论文 本期目录 | 过刊浏览 |
TiC/AZ91D镁基复合材料高温压缩变形行为
陈礼清;董群;郭金花;毕敬;徐永波
中国科学院金属研究所; 沈阳110016
Compressive deformation behavior of TiC/AZ91Dcomposites at elevated temperatures
CHEN Liqing; DONG Qun; GUO Jinhua; BI Jing; XU Yongbo
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

陈礼清; 董群; 郭金花; 毕敬; 徐永波 . TiC/AZ91D镁基复合材料高温压缩变形行为[J]. 金属学报, 2005, 41(3): 326-332 .
, , , , . Compressive deformation behavior of TiC/AZ91Dcomposites at elevated temperatures[J]. Acta Metall Sin, 2005, 41(3): 326-332 .

全文: PDF(431 KB)  
摘要: 利用自发渗透原位合成法制备了不同体积分数的TiC增强AZ91D 镁基复合材料,研究了不同压缩应变速率以及不同 变形温度下复合材料的热变形行为, 计算分析了不同温度下 应变速率敏感指数(m)和表观激活能(Q)与TiC含量的关系. 结果表明: TiC/AZ91D复合材料压缩流变应力随TiC含量的 增加而升高;TiC含量相同时,流变应力随温度升高或初始应变速率 减小而降低. m值随变形温度升高而增大;变形温度以及压缩应变速率 相同时,m值随TiC含量升高而增大. $Q$值依赖于温度、应变速率 和TiC含量及其分布,不同条件下其高温变形机制有所差异.
关键词 镁基复合材料反应渗透法原位合成    
Abstract:In situ reactive infiltration technique was utilized to synthesis TiC particulate-reinforced magnesium matrix composites (TiC/AZ91D). The hot compressive behavior of as fabricated composites was studied at strain rates $\dot{\varepsilon} =10 -3-10 -1 s-1 and at temperatures of 573-723 K. The strain rate sensitivity exponent ($m$), apparent activation energy (Q) and their relations with TiC content and temperature were calculated and analyzed according to the true stress-true strain curves. The results show that the compressive flow stress of the composites increases with increasing the TiC content. For the same TiC content, the flow stress decreases with elevating deformation temperatures or with decreasing the initial strain rates. The m value increases with increasing temperature and at the same deformation temperature and strain rate, the m value increases with increasing the TiC content. The Q value depends on the deformation temperature, strain rate and TiC content and its distribution, and the composites exhibit different deformation mechanisms at elevated temperatures.
Key wordsmagnesium matrix composite    reactive infiltration    in situ synthesis
收稿日期: 2004-04-21     
ZTFLH:  TB333  
[1] Lloyd D J. Int Mater Rev, 1994; 39: 1
[2] Hu H, Yu A, Li N Y, Allison J E. Mater Manufact Process, 2003; 18: 687
[3] Krishnadev M R, Angers R, Krishnadas Nair C G, Huard G. JOM, 1993; 45: 52
[4] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[5] Saravanan R A, Surappa M K. Mater Sci Eng, 2000; A276: 108
[6] Cai Y, Taplin D, Tan M J, Zhou W. Scr Mater, 1999; 41: 967
[7] Dong Q, Chen L Q, Zhao M J, Bi J. Mater Lett, 2004; 58: 920
[8] Chen L Q, Dong Q, Zhao M J, Bi J. Chin J Mater Res, 2004; 18: 193 (陈礼清,董群,赵明久,毕敬.材料研究学报,2004;18: 193)
[9] Dong Q, Chen L Q, Zhao M J, Bi J. J Mater Sci Technol, 2004; 20: 3
[10] Chen L Q, Dong Q, Zhao M J, Bi J, Kanetake N. Mater Sci Eng, 2005; A, in press
[11] Li S B, Wu K, Zheng M Y, Yao Z K. Mater Eng, 2003; (2): 15 (李淑波,吴昆,郑明毅,姚忠凯.材料工程,2003;(2):15)
[12] Jiang D T, Guo J T, Li G S, Shi C X. Acta Metall Sin, 1998; 34: 1143 (姜东涛,郭建亭,李谷松,师昌绪.金属学报,1998;34:1143)
[13] Roberts W, Kraussed G. In: Kraussed G ed., Deformation, Processing and Structure. Metals Park, OH: American Society for Metals, 1984: 109
[14] Barbagallo S, Cavaliere P, Cerri E. Mater Sci Eng, 2004; A367: 9
[1] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[2] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[3] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[4] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[5] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[6] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
[7] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[8] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
[9] 郑浩然, 陈民芳, 李祯, 由臣, 刘德宝. MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响[J]. 金属学报, 2017, 53(10): 1364-1376.
[10] 胡娜, 薛丽红, 顾健, 李和平, 严有为. 磨球级配对MA-SPS原位合成Al13Fe4/Al复合材料的组织结构及力学性能的优化*[J]. 金属学报, 2015, 51(2): 216-222.
[11] 张来启,潘昆明,段立辉,林均品. 原位合成MoSi2-SiC复合材料在500℃的氧化行为[J]. 金属学报, 2013, 49(11): 1303-1310.
[12] 张晓伟 刘洪喜 蒋业华 王传琦. 激光原位合成TiN/Ti3Al基复合涂层[J]. 金属学报, 2011, 47(8): 1086-1093.
[13] 朱庆振 薛文斌 鲁亮 杜建成 刘贯军 李文芳. (Al2O3-SiO2)sf/AZ91D镁基复合材料微弧氧化膜的制备及电化学阻抗谱分析 制备及电化学阻抗谱分析[J]. 金属学报, 2011, 47(1): 74-80.
[14] 王艳秋; 吴昆; 郑明毅 . SiCw/AZ91镁基复合材料的微弧氧化行为及涂层的耐腐蚀性能[J]. 金属学报, 2007, 43(6): 631-636 .
[15] 李晓军; 柴东朗; 郗雨林 . SiCp增强镁基复合材料微区应力场的仿真模拟[J]. 金属学报, 2004, 40(9): 927-929 .