Please wait a minute...
金属学报  2005, Vol. 41 Issue (3): 321-325     
  论文 本期目录 | 过刊浏览 |
电磁场对金属凝固界面前沿颗粒行为及分布的影响
孙秋霞;钟云波;任忠鸣;楼磊;邓康;徐匡迪
上海大学上海市现代冶金与材料制备重点实验室; 上海 200072
Effect of electromagnetic field on the behavior and distribution of the particles in front of metallic solidification interface
SUN Qiuxia; ZHONG Yunbo; REN Zhongming; LOU Lei; DENG Kang; XU Kuangdi
Shanghai Enhanced Laboratory of Modern Metallurgy & Materials Processing; Shanghai University; Shanghai 200072
引用本文:

孙秋霞; 钟云波; 任忠鸣; 楼磊; 邓康; 徐匡迪 . 电磁场对金属凝固界面前沿颗粒行为及分布的影响[J]. 金属学报, 2005, 41(3): 321-325 .
, , , , , . Effect of electromagnetic field on the behavior and distribution of the particles in front of metallic solidification interface[J]. Acta Metall Sin, 2005, 41(3): 321-325 .

全文: PDF(366 KB)  
摘要: 探讨了电磁场耦合定向凝固过程中非金属颗粒在金属中的分布与 电磁力的定量关系. 从理论上指出, 控制电磁力周期及凝固参数 可制备出颗粒浓度与金属生长距离呈函数关系的新型复合材料. 采用过共 晶Al-19%Si合金的定向凝固实验结果表明, 通过周期性地施加电磁力, 合金中的初晶富Si颗粒呈层状分 布, 表面硬度也呈周期变化. 通过改变电磁力施加周期和凝固速率, 可以自由改变富Si层之间的宽度.
关键词 电磁场颗粒行为凝固界面    
Abstract:The quantitative relationship between the nonmetallic particle's redistribution in metal and electromagnetic force (EMF) was developed during the process of unidirectional solidification in electromagnetic field. It was pointed theoretically that controlling the cycle of the electromagnetic field and the solidified parameters could produce a new composite material in which the content of the particles is a function of the unidistance from the growing interface. Experimental results show that by applying periodical electromagnetic force to the unidirectionally solidified hypereutectic Al-19%Si alloy, the primary silicon--rich particles distributed layer by layer, and the surface hardness fluctuated periodically. Through adjusting the frequency of the electromagnetic force and the rate of the solidifying interface, the width between the two adjacent layers could be changed freely.
Key wordselectromagnetic field    behavior of the particle    solidifying interface
收稿日期: 2004-04-23     
ZTFLH:  TF1  
[1] Uhlmann D R, Chalmers B, Jackson K A. J Appl Phys, 1964; 35: 2986
[2] Omenyi S N, Neumann A W. J Appl Phys, 1976; 47: 3956
[3] Boiling G F, Cisse J. J Cryst Growth, 1971; 10: 56
[4] Cisse J, Boiling G F. J Cryst Growth, 1971; 10: 67
[5] Korber C, Rau G. J Cryst Growth, 1985; 72: 649
[6] Stefanescu D M, Dhindaw B K, Kacar S A. Metall Trans, 1988; 19A: 2847
[7] Garvin J W, Udaykumar H S. J Cryst Growth, 2003; 252: 451
[8] Hadji L. Scr Mater, 2003; 48: 665
[9] Shangguan D, Ahuja S, Stefanescu D M. Metall Trans, 1992; 23A: 669
[10] Wu S S, Nakae Hideo. Spec Found Nonferrous Alloy, 1998; (3):34 (吴树森,中江秀雄.特种铸造及有色合金, 1998;(3):34)
[11] Zhong Y B, Ren Z M, Sun Q X, Deng K, Xu K D. Acta Metall Sin, 2003; 39: 1269 (钟云波,任忠鸣,孙秋霞,邓康,徐匡迪.金属学报,2003; 39:1269)
[12] Marty P, Alemany A. In: Moffatt H K, Proctor M R E, eds., Proc Symp Int Union of Theoretical and Applied Mechanics (IUTAM), London: The Metals Society, 1982: 245
[13] Taniguchi S, Brimacombe J K. In: Asoi A, ed., Int Symp Electromagnetic Processing Materials, Nagoya, Iron and Steel Institute of Japan, 1994: 429
[14] Zhong Y B, Sun Q X, Ren Z M, Deng K, Xu K D. In: Asai S, Fautrelle Y, Gillon P, eds., Proc 4th Int Conf on Electromagnetic Processing of Materials (EPM 2003), Nagoya, Iron and Steel Institute of Japan, 2003: 404
[15] Han Q, Hunt J D. ISIJ Int, 1995; 35: 693
[16] Leenov D, Kolin A. J Chem Phys, 1954; 22: 683
[17] Kolin A. Science, 1953; 117: 134
[18] Han Q Y, Hunt J D. Acta Metall Sin, 1996: 32: 363 (韩青有,Hunt J D.金属学报,1996;32:363)
[19] Li Q C. Theory of Cast Forming. Beijing: China Machine Press, 1982: 89 (李庆春.铸件形成理论.北京:机械工业出版社, 1982:89)f
[1] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[2] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[3] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[4] 龚永勇, 程书敏, 钟玉义, 张云虎, 翟启杰. 脉冲磁致振荡凝固技术[J]. 金属学报, 2018, 54(5): 757-765.
[5] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[6] 王强, 何明, 朱晓伟, 李显亮, 吴春雷, 董书琳, 刘铁. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018, 54(2): 228-246.
[7] 王菲,王恩刚,贾鹏,王韬,邓安元. 电磁连铸对Incoloy800H合金铸坯内TiN分布和内裂纹的影响[J]. 金属学报, 2017, 53(1): 97-106.
[8] 毕成, 郭志鹏, LIOTTI E, 熊守美, GRANT P S. 铝合金凝固过程枝晶破碎现象的定量化研究*[J]. 金属学报, 2015, 51(6): 677-684.
[9] 高中堂, 胡锐, 王军, 杨劼人, 李金山. 电磁场下近液相线高温合金熔体处理非枝晶组织的形成[J]. 金属学报, 2014, 50(12): 1471-1477.
[10] 贾鹏,王恩刚,鲁辉,赫冀成. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49(12): 1573-1580.
[11] 王芳 李宝宽 . 电渣重熔过程中的电磁场和Joule热分析[J]. 金属学报, 2010, 46(7): 794-799.
[12] 杜慧玲 王建中 齐锦刚 何力佳 苍大强. 脉冲电磁场对CoC2O·2H2O粒度的影响[J]. 金属学报, 2009, 45(8): 1019-1024.
[13] 许秀杰 邓安元 王恩刚 张林涛 张兴武 张永杰 赫冀成. 电磁软接触连铸圆坯表面振痕演变机理[J]. 金属学报, 2009, 45(4): 464-469.
[14] 任兵芝; 朱苗勇; 王宏丹; 陈永 . 大方坯连铸结晶器电磁搅拌三维电磁场与流场的数值模拟[J]. 金属学报, 2008, 44(4): 507-512 .
[15] 于海岐 朱苗勇. 圆坯结晶器电磁搅拌过程三维流场与温度场数值模拟[J]. 金属学报, 2008, 44(12): 1465-1473.