Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 886-896    DOI: 10.3724/SP.J.1037.2013.00816
  本期目录 | 过刊浏览 |
晶体相场方法模拟高温应变作用的预熔化晶界的位错运动*
高英俊1,2(), 周文权1, 邓芊芊1, 罗志荣1,3, 林葵1, 黄创高1,2
1 广西大学物理科学与工程技术学院, 南宁 530004
2 广西大学广西有色金属及特色材料加工重点实验室, 南宁 530004
3 玉林师范学院物理科学与工程技术学院, 玉林 537000
PHASE FIELD CRYSTAL SIMULATION OF STRAIN EFFECTS ON DISLOCATION MOVEMENT OF PREMELTING GRAIN BOUNDRIES AT HIGH TEMPERATURE
GAO Yingjun1,2(), ZHOU Wenquan1, DENG Qianqian1, LUO Zhirong1, LIN Kui1, HUANG Chuanggao1,2
1 College of Physics Science and Engineering, Guangxi University, Nanning 530004
2 Guangxi Key Laboratory for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004
3 Institute of Physics Science and Engineering Technology, Yulin Normal University, Yulin 537000
引用本文:

高英俊, 周文权, 邓芊芊, 罗志荣, 林葵, 黄创高. 晶体相场方法模拟高温应变作用的预熔化晶界的位错运动*[J]. 金属学报, 2014, 50(7): 886-896.
Yingjun GAO, Wenquan ZHOU, Qianqian DENG, Zhirong LUO, Kui LIN, Chuanggao HUANG. PHASE FIELD CRYSTAL SIMULATION OF STRAIN EFFECTS ON DISLOCATION MOVEMENT OF PREMELTING GRAIN BOUNDRIES AT HIGH TEMPERATURE[J]. Acta Metall Sin, 2014, 50(7): 886-896.

全文: PDF(16527 KB)   HTML
摘要: 

采用晶体相场模型, 分别模拟了小角对称倾侧双晶体系在高温接近熔点温度和达到固-液共存温度时, 在外加应变作用下的小角度晶界以及位错的湮没过程. 研究表明, 没有加外应变时, 当体系接近熔点温度情况下, 晶界处的晶格位错周围出现预熔化现象, 此时预熔化区域内的位错结构并没有发生改变; 当温度达到高温固-液共存温度时, 预熔化区域明显增大. 经高温预熔化后, 再施加外应变作用, 这时, 已存在预熔化的晶界位错发生滑移运动, 然后出现位错相遇湮没, 晶界消失, 同时, 伴随的预熔化区域也消失. 在预熔化温度情况下的晶界位错的湮没规律基本相同. 预熔化温度越接近熔点温度, 位错缺陷周围预熔化区域出现晶格原子软化现象越明显, 降低了位错周围原子之间的结合强度. 这时, 在施加外应变作用下, 晶格原子对位错滑移运动的阻力降低, 位错运动得更快. 对于达到高温固-液共存温度情况, 此时施加外加应变后, 原预熔化区域会出现应变诱发更大面积的预熔化区域. 观察到外加应变诱发预熔化区域变化过程中, 出现了位错成对地增殖, 并发生位错对的旋转和湮没等相互作用; 同时, 外加应变诱发的预熔化区域的形状随预熔化区内的位错的相互作用而发生变化, 出现了预熔化区域相向扩展、连通, 然后又分解、分离; 尽管这时的预熔化区域形状随外应变作用在不断变化, 但此时的预熔化区并不会出现合并消失现象, 与较低的预熔化温度的位错运动情况完全不同.

关键词 晶体相场模型应变晶界预熔化位错高温    
Abstract

The properties of modern materials, especially superplastic, nanocrystalline or composite materials, depend critically on the properties of internal interfaces such as grain boundaries (GBs) and interphase boundaries (IBs). All processes which can change the properties of GBs and IBs affect drastically the behaviour of polycrystalline metals and ceramics. In this work, the annihilation processes of low-angle symmetric tilt GBs and dislocations during plastic deformation in the representative system of these materials near but below the melting point and the temperature at liquid-solid coexistence line were simulated using the phase-field crystal model, respectively. The results show that local premelting occurs around lattice dislocations near the melting point but the dislocation structure in the premelting region does not change, while the region become significantly larger when the system reaches the melting temperature. After premelting, deformation to the system causes dislocations in the premelting GB to begin to glide then annihilate with opposite Burgers vectors via the movement, finally the GB and the premelting region disappear. The annihilation mechanisms of dislocations are similar to those for premelting conditions. The more the temperature is closer to the melting point, the more obvious the atomic lattice around the premelting region is softened leading to the atomic binding strength around the dislocations being lowered. Only at this moment, the lattice atoms enable to reduce the resistance of the dislocation motion and accelerate its velocity during deformation. At the temperature reaching to the liquid-solid coexisting region in the simulation, the original premelting regions are induced to develop into bigger ones by the external strain acting. During this process, it can be seen some interactions including the multiplication dislocation pairs, the rotation of dislocation pairs and their annihilation. Furthermore, the shape of the premelting region changes with the variation of the interaction of dislocations inside the region, it is observed that the premelting regions approach each other and consolidate together, then decompose and segregate from each other. Although the shape of the premelting region changes with the applied strain, these regions do not disappear at the end of the simulation, totally different those in lower premelting temperature.

Key wordsphase-field crystal model    strain    grain boundary premelting    dislocation    high temperature
收稿日期: 2013-12-16     
ZTFLH:  TG111.2  
基金资助:*国家自然科学基金项目51161003和50661001;广西自然科学基金重点项目2012GXNSFDA053001;广西大学广西有色金属及特色材料加工重点实验室开放基金GXKFJ12-01资助
作者简介: null

高英俊, 男, 1962年生, 教授

图1  单模近似得到的二维相图[29,36]
Sample First stage at low temperature Second stage at high temperature
r φ0 r φ0
A -0.3 -0.180 -0.1 -0.180
B -0.3 -0.195 -0.1 -0.195
C -0.3 -0.199 -0.1 -0.199
表1  样品的制备参数
图2  不同样品的晶界位错预熔化形貌图和位错排列结构模型
图3  晶界位错预熔化区的原子密度序参量随位置的分布
图4  样品A和B在应变作用下的晶界湮没过程模拟
图5  不同样品的应变-自由能曲线
图6  样品C在应变作用下的晶界位错的演化过程模拟
[1] Straumal B B, Zieba P, Gust W. Int J Inorg Mater, 2001; 3: 1113
[2] Straumal B, Kogtenkova O, Protasova S, Mazilkin A, Zieba P. Mater Sci Eng, 2008; A495: 126
[3] Luo J. Curr Opin Solid State Mater Sci, 2008; 12: 81
[4] Alsayed A M, Islam M F, Zhang J, Collings P J, Yodh A G. Science, 2005; 309: 1207
[5] Tallon J L. Nature, 1978; 276: 849
[6] Bartis F J. Nature, 1977; 268: 427
[7] Oxtoby D W. Nature, 1990; 347: 725
[8] Pusey P N. Science, 2005; 309: 1198
[9] Hsich T E, Ballaffi R W. Acta Metall, 1989; 37: 1637
[10] Lu K, Sheng H W, Jin Z H. Chin J Mater Res, 1997; 11: 658
[10] (卢 柯, 生红卫, 金朝晖. 材料研究学报, 1997; 11: 658)
[11] Chaudron G, Lacombe P, Yannacguis N. C R Acad Sci, 1948; 226: 1372
[12] Balluffi R W, Maurer R. Scr Metall, 1988; 22: 709
[13] Hsieh T E, Balluffi R W. Acta Metall, 1989; 37: 1637
[14] Divinski S, Lohman M, Herzig C, Straumal B, Baretzky B, Gust W. Phys Rev, 2005; 71B: 104104
[15] Straumal B B, Noskovich Q I, Semenov V N. Acta Metall Mater, 1992; 40: 795
[16] Wang N, Mokadam S, Rappaz M, Kurz W. Acta Mater, 2004; 52: 3173
[17] Inoko F, Okada T, Maraga T, Nakano Y, Yoshikawa T. Interf Sci, 1997; 4: 263
[18] Inoko F, Hama T, Tagami M, Yoshikawa T. Ultramicroscopy, 1991; 39: 118
[19] Zhang L, Wang S Q, Ye H Q. Acta Phys Sin, 2004, 53: 2497
[19] (张 林, 王绍青, 叶恒强. 物理学报, 2004; 53: 2497)
[20] Willians P L, Mishin Y. Acta Mater, 2009; 57: 3786
[21] Frolov T, Mishin Y. Phys Rev, 2009; 79B: 174110
[22] Keblinski P, Phillpot S R, Wolf D, Gleiter H. Acta Mater, 1997; 45: 987
[23] Besold G, Mouritsen O G. Phys Rev, 1994; 50B: 6573
[24] Qi Y, Krajewski P E. Acta Mater, 2007; 55: 1555
[25] Wang H L, Wang X X, Liang H Y. Acta Phys Sin, 2005; 54: 4836
[25] (王海龙, 王秀喜, 梁海弋. 物理学报, 2005; 54: 4836)
[26] Lobkovsky A E, Warran J A. Physica, 2002; 164D: 202
[27] Mishin Y, Boetlinger W J, Warren J A, McFadden G B. Acta Mater, 2009; 57: 3771
[28] Elder K R, Katakowski M, Haataja M, Grant M. Phys Rev Lett, 2002; 88: 245701
[29] Elder K R, Grant M. Phys Rev, 2004; 70E: 051605
[30] Yu Y M, Backofen R, Voigt A. J Cryst Growth, 2011; 318: 18
[31] Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T. Phys Rev Lett, 2012; 108: 226102
[32] Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K. Acta Phys Sin, 2013; 62: 050507
[32] (高英俊, 罗志荣, 黄创高, 卢强华, 林 葵. 物理学报, 2013; 62: 050507)
[33] Greenwood M, Rottler J, Provatas N. Phys Rev, 2011; 83E: 031601
[34] Mkhonta S K, Elder K R, Huang Z F. Phys Rev Lett, 2013; 111: 035501
[35] Gao Y J, Luo Z R, Huang L L, Lin K. Chin J Nonferrous Met, 2013; 23: 1892
[35] (高英俊, 罗志荣, 黄礼琳, 林 葵. 中国有色金属学报, 2013; 23:1892)
[36] Yang T, Chen Z, Dong W P. Acta Metall Sin, 2011; 47: 1301
[36] (杨 涛, 陈 铮, 董卫平. 金属学报, 2011; 47: 1301)
[37] Gao Y J, Lu C J, Huang L L, Luo Z R, Huang C G. Acta Metall Sin, 2014; 50: 110
[37] (高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高. 金属学报, 2014; 50: 110)
[38] Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y. Chin J Comput Phys, 2013; 30: 577
[38] (高英俊, 王江帆, 罗志荣, 卢强华, 刘 瑶.计算物理, 2013; 30: 577)
[39] Mellenthin J, Karma A, Phapp M. Phys Rev, 2008; 78B: 184110
[40] Hirouchi T, Takaki T, Tomita Y. Comput Mater Sci, 2009; 44: 1192
[41] Hirouchi T, Takaki T, Tomita Y. Int J Mech Sci, 2010; 52: 309
[42] Adland A, Karma A, Spatschek R, Buta D, Asta M. Phys Rev, 2013; 87B: 024110
[43] Olmsted D L, Buta D, Adland A, Foils S M, Asta M, Karma A. Phys Rev Lett, 2011; 106: 046101
[44] Spatschek R, Adland A, Karma A. Phys Rev, 2013; 87B: 024109
[45] Berry J, Elder K R, Grant M. Phys Rev, 2008; 77B: 224114
[46] Spatschek R, Kouman A. Phys Rev, 2010; 81B: 214201
[47] Lu Y L, Mu H, Hou H X, Chen Z. Acta Metall Sin, 2013; 49: 358
[47] (卢艳丽, 牧 虹, 侯华欣, 陈 铮. 金属学报, 2013; 49: 358)
[48] Cheng M, Warren J A. J Comput Phys, 2008; 227: 6241
[49] Gao Y J, Luo Z R, Huang L L, Hu X Y. Acta Metall Sin, 2012; 48:1215
[49] (高英俊, 罗志荣, 黄礼琳, 胡项英. 金属学报, 2012; 48: 1215)
[50] Hirth J P, Pond R C, Lothe J. Acta Mater, 2006; 54: 4237
[51] Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z. Acta Phys Sin, 2013; 62: 218101
[51] (龙 建, 王诏玉, 赵宇龙, 龙清华, 杨 涛, 陈 铮. 物理学报, 2013; 62: 218101)
[52] Hirth J P, Lothe J. Theory of Dislocation. New York: McGraw-Hill, 1968: 250
[53] Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Scr Mater, 2011; 64: 327
[54] Wang Y B, Ho J C, Cao Y, Liao X Z, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 091911
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[7] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[8] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[9] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[10] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[11] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[12] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[13] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[14] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.