Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 367-372    DOI: 10.3724/SP.J.1037.2013.00548
  本期目录 | 过刊浏览 |
Al-Ti-B4C体系熔体内燃烧合成TiC-TiB2颗粒局部增强钢基复合材料*
王盈, 邹兵林(), 曹学强
中国科学院长春应用化学研究所稀土资源利用国家重点实验室, 长春 130022
COMBUSTION SYNTHESIS OF TiC-TiB2 PARTICU- LATES LOCALLY REINFORCED STEEL MATRIX COMPOSITES FROM AN Al-Ti-B4C SYSTEM DURING CASTING
WANG Ying, ZOU Binglin(), CAO Xueqiang
State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
引用本文:

王盈, 邹兵林, 曹学强. Al-Ti-B4C体系熔体内燃烧合成TiC-TiB2颗粒局部增强钢基复合材料*[J]. 金属学报, 2014, 50(3): 367-372.
Ying WANG, Binglin ZOU, Xueqiang CAO. COMBUSTION SYNTHESIS OF TiC-TiB2 PARTICU- LATES LOCALLY REINFORCED STEEL MATRIX COMPOSITES FROM AN Al-Ti-B4C SYSTEM DURING CASTING[J]. Acta Metall Sin, 2014, 50(3): 367-372.

全文: PDF(11549 KB)   HTML
摘要: 

利用Al-Ti-B4C体系通过燃烧合成辅助铸造法成功制备了TiC-TiB2颗粒局部增强钢基复合材料, 研究了Al含量对局部增强复合材料的组织及耐磨性的影响. 结果表明, 不同Al含量(0~50%, 质量分数)的Al-Ti-B4C压坯在约1873 K钢液浇注下都能原位反应生成TiC和TiB2陶瓷颗粒, 而且钢液都向预制块发生了不同程度的浸渗. 压坯内Al含量的变化不仅影响了合成产物的相组成及陶瓷相的分布、尺寸和数量, 而且还影响了局部增强区和钢基体界面处陶瓷颗粒的分布状况. 随Al含量的增加, 合成陶瓷的颗粒大小、数量以及颗粒间的孔隙均变小, 产物中形成的金属间化合物的种类和数量增多, 且陶瓷颗粒在界面处的梯度分布趋势减弱并最终消失. 磨损测试结果表明, 复合材料局部增强区的耐磨损性比钢基体显著提高, 而且在Al含量为0时为最好, 然后依次为含30%Al, 10%Al和50%Al的复合材料.

关键词 燃烧合成复合材料组织磨损    
Abstract

From the point of view of the application, the service life of component usually relies on the wear resistance of local region, and it is desirable that the local region of component rather than the whole component is reinforced by ceramic particulate to offer high-wear resistance. In this study, the TiC-TiB2 particulates locally reinforced steel matrix composites were fabricated by an SHS-casing route using an Al-Ti-B4C system. The effects of the Al content on the microstructure and wear resistance of the composites were investigated. The results show that the TiC and TiB2 particulates were formed in all the preforms with various Al contents (0~50%, mass fraction) after the high temperature (about 1873 K ) steel melt was poured into the mold and the molten steel, to the different extents, penetrates into the synthesized samples. The Al content in the preforms has a large effect on the constitute of the synthesized products and the quantity, size and distribution of the ceramic phases in both the reinforced region and the transition region. With the increase of the Al content, the quantity and average size of the ceramic particles as well as holes decrease, the type and quantity of the intermetallic compounds in the products increase and the gradient distribution of the ceramic particles in the transition region weakens and finally disappears. The wear resistance of the locally reinforced composites is much superior to that of the unreinforced steel matrix, and the best appears in the sample free of Al composition, and then followed by the samples of 30%Al, 10%Al and 50%Al in turn.

Key wordscombustion synthesis    composite    microstructure    wear
收稿日期: 2013-09-04     
ZTFLH:  TB33  
基金资助:* 国家自然科学基金资助项目51101143
作者简介: null

王 盈, 男, 1984年生, 助理研究员

图1  
图2  
图3  
图4  
图5  
[1] Xu K D. Iron Steel, 2008; 43(2): 1
[1] (徐匡迪. 钢铁, 2008; 43(2): 1)
[2] Guo Z C, Fu Z X. Energy, 2010; 35: 4356
[3] Yin R Y. Acta Metall Sin, 2002; 38: 561
[3] (殷瑞钰. 金属学报, 2002; 38: 561)
[4] Zhang Y H, Yuan X Z, Luo D M, Nie X T, Zhao X J. Ind Furn, 2013; 35(3): 12
[4] (张永红, 袁熙志, 罗冬梅, 聂雪涛, 赵熙锦. 工业炉, 2013; 35(3): 12)
[5] Tjong S C, Lau K C. Compos Sci Technol, 2000; 60: 1141
[6] Degnan C C, Shipway P H. Wear, 2002; 252: 832
[7] Pagounis E, Lindroos V K. Mater Sci Eng, 1998; A246: 221
[8] Liu J J, Liu Z D. Mater Lett, 2010; 64: 684
[9] Cook B A, Peters J S. Wear, 2011; 271: 640
[10] Jiang Q C, Ma B X, Wang H Y, Wang Y, Dong Y P. Composites Part A, 2006; 37: 133
[11] Liang Y H, Han Z W, Zhang Z H, Li X J, Ren L Q. Mater Des, 2012; 40: 64
[12] Wang Y, Zhang Z Q, Wang H Y, Ma B X, Jiang Q C. Mater Sci Eng, 2006; 422: 339
[13] Pan Y. Manuf Inf Eng China, 1995; (3): 5
[13] (潘 冶. 机械设计与制造工程,1995; (3): 5)
[14] Zhang D M, Li F Z, Liu Z J, Han Y Y. J Harbin Univ Sci Technol, 2002; 7(4): 22
[14] (章德铭, 李凤珍, 刘兆晶, 韩媛媛. 哈尔滨理工大学学报, 2002; 7(4): 22)
[15] Zeng S Y, Zhang E L, Li Q C. Aero Mater Technol, 1995; (5): 27
[15] (曾松岩, 张二林, 李庆春. 宇航材料工艺, 1995; (5): 27)
[16] Yan Y W, Wei B K, Fu Z Y. Acta Metall Sin, 1999; 35: 909
[16] (严有为, 魏伯康, 傅正义. 金属学报, 1999; 35: 909)
[17] Wang H Y, Jiang Q C, Ma B X, Wang Y, Zhao F. J Alloys Compd, 2005; 391: 55
[18] Li B H, Liu Y, Li J, Gao S J, Cao H, He L. Mater Des, 2010; 31:877
[19] Jiang Q C, Ma B X, Wang H Y, Wang Y, Dong Y P. Composites Part A, 2006; 37: 133
[20] Zou B L, Shen P, Cao X Q, Jiang Q C. Mater Chem Phys, 2012; 132: 51
[21] Moore J J, Feng H J. Mater Sci, 1995; 39: 243
[22] Munir Z A,Tamburuni U A. Mater Sci Rep, 1989; 3: 277
[23] Gusev A I. Solid State Chem, 1997; 133: 205
[24] Liang Y J,Che Y C. Handbook of Thermodynamic Data of Inorganics. Shenyang: Northeastern University Press, 1993: 1
[24] (梁英教,车荫昌. 无机物热力学数据手册. 沈阳: 东北大学出版社, 1993: 1)
[25] Tang W M, Tang H J, Zheng Z Q, Ding H F, Lv J, Liu J W. Chin J Nonferrous Met, 2003; 13: 811
[25] (汤文明, 唐红军, 郑治群, 丁厚福, 吕 珺, 刘君武. 中国有色金属学报, 2003; 13: 811)
[26] Zhang Y J, Jun Y S, Bao Z C. Bull Chin Ceram Soc, 2000; (4): 39
[26] (张玉军, 君衍升, 包志臣. 硅酸盐通报, 2000; (4): 39)
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[13] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[14] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.