Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 88-94    DOI: 10.3724/SP.J.1037.2013.00503
  论文 本期目录 | 过刊浏览 |
Er3+-Tm3+-Yb3+ 掺杂 Bi4Ti3O12 薄膜的上转换白色荧光和铁电性能*
孙丽娜1(), 谭俊2,3, 巴德纯1, 原培新1
1 东北大学机械工程与自动化学院, 沈阳110819
2 东北大学理学院, 沈阳110819
3 东北大学研究院, 沈阳110819
UPCONVERSION WHITE PHOTOLUMINESCENCE AND FERROELECTRIC PROPERTY FOR Er3+-Tm3+- Yb3+ TRI-CODOPED Bi4Ti3O12 THIN FILM
SUN Lina1(), TAN Jun2,3, BA Dechun1, YUAN Peixin1
1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819
2 College of Sciences, Northeastern University, Shenyang 110819
3 Research Institute, Northeastern University, Shenyang 110819
引用本文:

孙丽娜, 谭俊, 巴德纯, 原培新. Er3+-Tm3+-Yb3+ 掺杂 Bi4Ti3O12 薄膜的上转换白色荧光和铁电性能*[J]. 金属学报, 2014, 50(1): 88-94.
Lina SUN, Jun TAN, Dechun BA, Peixin YUAN. UPCONVERSION WHITE PHOTOLUMINESCENCE AND FERROELECTRIC PROPERTY FOR Er3+-Tm3+- Yb3+ TRI-CODOPED Bi4Ti3O12 THIN FILM[J]. Acta Metall Sin, 2014, 50(1): 88-94.

全文: PDF(6686 KB)   HTML
摘要: 

通过化学溶液沉积法制备了 Er3+-Tm3+-Yb3+ 共掺杂的Bi4Ti3O12薄膜, 并研究了薄膜的上转换荧光和铁电性能. 在980 nm红外光的激发下, 薄膜的室温发射光谱在可见光区域显示出4个发射带, 分别是峰值为478 nm的蓝光发射带, 对应Tm3+1G43H6能级跃迁; 峰值为527和548 nm的绿光发射带, 对应 Er3+ 2H11/2 4I15/2 4S3/2 4I15/2 能级跃迁; 峰值为 657 nm 的红光发射带, 由 Er3+ 4F9/2 4I15/2 和 Tm3+ 1G4 3F4能级跃迁产生的发射带复合而成. 荧光的颜色可以通过改变Er3+, Tm3+, Yb3+ 离子的掺杂浓度加以调节. 在固定Tm3+, Yb3+ 浓度的Bi3.59-xErxTm0.01Yb0.4Ti3O12(BErxTYT) 薄膜中, 随着Er3+浓度的增加, 红、蓝光和绿、蓝光的强度比均增加, Er3+离子的淬灭浓度为 1.75‰(摩尔分数, 下同); 在固定 Er3+, Yb3+ 浓度的Bi3.593-yEr0.007TmyYb0.4Ti3O12(BETmyYT) 薄膜中, 随着Tm3+ 浓度的增加, 绿、蓝光和红、蓝光的强度比均降低, Tm3+ 的淬灭浓度为 2.5‰; 在固定 Er3+, Tm3+ 浓度的Bi3.98-zEr0.01Tm0.01YbzTi3O12(BETYbzT) 薄膜中, 随着 Yb3+ 浓度的增加, 蓝、绿光和红、绿光的强度比均增加, Yb3+ 对 Er3+ 发射的荧光淬灭浓度小于5%, 而对 Tm3+ 发射的荧光淬灭浓度大于 18%. Bi3.5815Er0.0085Tm0.01Yb0.4Ti3O12 薄膜上转换荧光值为(0.31, 0.34), 最接近标准白光的色度坐标(0.33, 0.33). 在不同功率的红外激光激发下, 薄膜荧光的色度坐标变化幅度很小, 说明薄膜具有较好的颜色稳定性. 通过分析薄膜荧光的上转换机制, 从 Er3+ 向 Tm3+ 有明显的能量传递发生, 使光谱中红、绿、蓝光的相对强度和稀土离子的淬灭浓度发生明显变化. 薄膜的铁电性能测试表明, 当 Er3+, Tm3+, Yb3+ 掺杂的总浓度约为 10% 时(Bi3.5815Er0.0085Tm0.01Yb0.4Ti3O12), 薄膜的铁电剩余极化强度达到最大值, 为 27.8 μC/cm2.

关键词 白色荧光铁电性能上转换薄膜    
Abstract

The Er3+-Tm3+-Yb3+ tri-codoped Bi4Ti3O12 thin films were prepared by chemical solution deposition method and its upconversion (UC) photoluminescence and ferroelectric properties were studied. There are four emission bands in the visible UC luminescence spectra excited by 980 nm infrared light at room temperature. The 478 nm blue emission band corresponds to 1G43H6 transition of Tm3+, and the 527, 548 nm green emission bands correspond to 2H11/2 4I15/2 and 4S3/24I15/2 transitions of Er3+, and the 657 nm red emission band corresponds to 4F9/24I15/2 transition of Er3+ and 1G43F4 transition of Tm3+. The fluorescent color can be tuned by adjusting Er3+, Tm3+ and Yb3+ concentrations. For Bi3.59-xErxTm0.01Yb0.4Ti3O12 (BErxTYT) thin films with fixed Tm3+ and Yb3+ concentrations, the intensity ratio of green and red emissions to blue one gradually increased with the increase of Er3+ concentrations, and the quenching concentration of Er3+ is only about 1.75‰ (mole fraction). For Bi3.593-yEr0.007TmyYb0.4Ti3O12 (BETmyYT) thin films with fixed Er3+ and Yb3+ concentrations, the intensity ratio of green and red emissions to blue one decreased with the increase of Tm3+ concentrations, and Tm3+ quenching concentration is about 2.5‰. For Bi3.98-zEr0.01Tm0.01YbzTi3O12 (BETYbzT) thin films with fixed Er3+ and Tm3+ concentrations, the intensity ratio of blue or red emission to green one increase with increase of Yb3+ concentrations, and Yb3+ quenching concentration is less than 5 mol% for the luminescence from Er3+ and lager than 18 mol% for the luminescence from Tm3+. The optimal color coordinate in these films is (0.31, 0.34), close to standard white-light coordinate of (0.33, 0.33), which appears in Bi3.5815Er0.0085Tm0.01Yb0.4Ti3O12 thin film. The color coordinate has only a little change with increasing pumping power, which suggests that luminescence from the thin films has good color stability. There exist significant energy transfers from Er3+ to Tm3+, which will affect the relative intensities of blue, green and red emissions and their quenching concentrations by analyzing the UC emission mechanism of the thin films. The remnant polarization value of the film prepared on Pt/Ti/SiO2/Si substrate reaches the maximum and is equal to 27.8 μC/cm2 when the total codoping concentration of Er3+, Tm3+ and Yb3+ is about 10% (Bi3.5815Er0.0085Tm0.01Yb0.4Ti3O12 film).

Key wordswhite photoluminescence    ferroelectric property    upconversion    thin film
收稿日期: 2013-08-20     
ZTFLH:  O484.4  
基金资助:* 辽宁省科技攻关计划项目 2012216033, 中央高校基本科研业务费资助项目 N120403013, 沈阳市科技攻关计划项目 F11-174-9-00 和沈阳市科技计划项目 F12-277-1-60 资助
作者简介: null

孙丽娜, 女, 1977年生, 讲师, 博士

图1  
图 2  
图3  
图 4  
图 5  
图6  
图7  
[1] Hou X R, Zhou S M, Jia T T, Lin H, Teng H.J Alloys Compd, 2011; 509: 2793
[2] Chen D Q, Wang Y S, Zheng K L, Guo T L, Yu Y L, Huang P.Appl Phys Lett, 2007; 91: 251903
[3] Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G.Nat Mater, 2011; 10 : 968
[4] Sivakumar S, Van Veggel F C, Raudsepp M.J Am Chem Soc, 2005; 127: 12464
[5] Van der Ende B M, Aarts L, Meijerink A.Phys Chem Chem Phys, 2009; 11: 11081
[6] Wang D Y, Yin M, Xia S D, Makhov V N, Khaidukov N M, Krupa J C.J Alloys Compd, 2004; 368:337
[7] Xu C F, Ma M, Zeng S J, Ren G Z, Yang L W, Yang Q B.J Alloys Compd, 2011; 509: 7943
[8] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G.Nat Lett, 2010; 463: 1061
[9] Gandhi Y, Ramachandra R M V, Srinvasa R C, Srikumar T, Kityk I V, Veeraiah N.J Appl Phys, 2010; 108: 023102
[10] Liu F, Ma E, Chen D Q, Yu Y L, Wang Y S.J Phys Chem, 2006; 110B: 20843
[11] Chen X Q, Li Y L, Kong F, Li L P, Sun Q, Wang F P.J Alloys Compd, 2012; 541: 505
[12] Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H.J Electrochem Soc, 2011; 158: G128
[13] Gao F, Zhang Q Y, Ding G J, Qin N, Bao D H.J Am Ceram Soc,2011; 94: 3867
[14] Wang R, Liu L, Sun J C, Qian Y N, Zhang Y S, Xu Y L. Opt Commun, 2012; 285: 957
[15] Wang H S, Duan C K, Tanner P A.J Phys Chem, 2008; 112C: 16651
[16] Zhou H, Wu G H, Gao F, Qin N, Bao D H.IEEE T Ultrason Ferr, 2010; 57: 2134
[17] Ruan K B, Chen X M, Liang T, Wu G H, Bao D H.J Appl Phys, 2008; 103: 074101
[18] Gunawan L, Lazar S, Gautreau O, Harnagea C, Pignolet A, Botton G A. Appl Phys Lett, 2009; 95: 192902
[19] Watanabe T, Funakubo H, Osada M, Uchida H, Okada I. J Appl Phys, 2005; 98: 024110
[20] Guo D Y, Li M Y, Wang J, Liu J, Yu B F, Yang B.Appl Phys Lett, 2007; 91: 232905
[21] Wyszecki G, Stiles W S. Color Science: Concepts and Methods, Quantitative Data and Formulae. Hoboken: John Wiley & Sons Inc, 2000: 130
[22] Ajroud M, Haouari M, Ben Ouada H, Mâaref H, Brenier A, Champagnon B.Mater Sci Eng, 2006; C26: 523
[23] Oliveira R C, Cavalcante L S, Sczancoski J C, Aguiar E C, Espinosa J W M, Varela J A, Pizani P S, Longo E.J Alloys Compd, 2009; 478: 661
[24] Ding G J, Gao F, Wu G H, Bao D H.J Appl Phys, 2011; 109: 123101
[25] Das G K, Tan T T Y.J Phys Chem, 2008; 112C: 11211
[26] Yeh D C, Petrin R R, Sibley W A, Madigou V, Adam J L, Suscavage M J.Phys Rev, 1989; 39B: 80
[27] Xiao Z S, Serna R, Afonso C N. J Appl Phys, 2007; 101: 033112
[28] Chan E M, Gargas D J, Schuck P J, Milliron D J.J Phys Chem, 2012; 116B: 10561
[29] Seo S Y, Shin J H, Bae B S, Park N, Penninkhof J J, Polman A.Appl Phys Lett, 2003; 82: 3445
[30] Pollnau M, Gamelin D R, Lüthi S R, Güdel H U, Hehlen M P.Phys Rev, 2000; 61B: 3337
[31] Ostermayer Jr F W, Van der Ziel J P, Marcos H M, Van Uitert L G, Geusic J E.Phys Rev, 1971; 3B: 2698
[32] Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M.J Appl Phys, 2004; 96: 661
[33] Sun H T, Xu S Q, Dai S X, Zhang J J, Hu L L, Jiang Z H.Solid State Commun, 2004; 132: 193
[34] Sun H T, Yu C L, Duan Z C, Wen L, Zhang J J, Hu L L, Dai S X.Opt Mater, 2006; 28: 448
[35] Gao F, Wu G H, Zhou H, Bao D H. J Appl Phys, 2009; 106: 12610
[1] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
[2] 邱龙时, 赵婧, 潘晓龙, 田丰. 高速钢表面TiN薄膜的界面疲劳剥落行为[J]. 金属学报, 2021, 57(8): 1039-1047.
[3] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[4] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[5] 李长记,邹敏杰,张磊,王元明,王甦程. 外延膜的高分辨X射线衍射分析[J]. 金属学报, 2020, 56(1): 99-111.
[6] 何东昱,刘玉欣. 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜90°分步畴转与温度效应[J]. 金属学报, 2019, 55(3): 325-331.
[7] 吴厚朴,田修波,张新宇,巩春志. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2019, 55(3): 299-307.
[8] 宋贵宏,李贵鹏,刘倩男,杜昊,胡方. 溅射沉积Mg2(Sn, Si)薄膜组织结构与导电性能[J]. 金属学报, 2019, 55(11): 1469-1476.
[9] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[10] 马晓琴, 詹清峰, 李金财, 刘青芳, 王保敏, 李润伟. 倾斜溅射对CoFeB薄膜条纹磁畴结构与磁各向异性的影响[J]. 金属学报, 2018, 54(9): 1281-1288.
[11] 于晓明, 谭丽丽, 刘宗元, 杨柯, 朱忠林, 李扬德. Ti6Al4V表面生物功能纯Mg薄膜制备及性能研究[J]. 金属学报, 2018, 54(6): 943-949.
[12] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[13] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[14] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫. 各向异性稀土永磁薄膜的磁黏滞性[J]. 金属学报, 2018, 54(3): 457-462.
[15] 张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.