Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 325-331    DOI: 10.11900/0412.1961.2018.00107
  本期目录 | 过刊浏览 |
0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜90°分步畴转与温度效应
何东昱(),刘玉欣
陆军装甲兵学院装备再制造技术国防科技重点实验室 北京 100072
PFM Study of the 90° Step-by-Step Domain Switching and the Temperature Effect in 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 Ferroelectric Thin Film
Dongyu HE(),Yuxin LIU
National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
全文: PDF(15612 KB)   HTML
摘要: 

通过压电力显微镜对溶胶凝胶法制备的0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜电畴结构进行研究。结果表明,薄膜中铁电相为主相,面内极化的a畴和离面极化的c畴同时存在于铁电纳米晶粒中。在针尖极化电场的作用下,薄膜晶粒内的电畴取向发生变化,180°电畴翻转分为两步90°畴转实现,最终完成c-a-c的电畴转变。温度的变化影响畴转的过程,温度越高越有利于畴转,这与有效电场的增大有关。

关键词 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜压电力显微镜90°分步畴转温度效应有效电场    
Abstract

In ferroelectrics, the presence of domain structures and switchable polarization plays an important role in ferroelectric performance and the design of future electronic devices. Understanding domain behaviors is crucial for ferroelectrics promising applications, particularly in nonvolatile memory, microwave ceramics, electromechanical sensors and actuators. As a convenient, nondestructive and high-resolution technique, the piezoresponse force microscopy (PFM) provides a powerful method for observing domain structures and their dynamic behavior at the micron and nanometer scales. In this work, PFM has been used to study the domain structures and their dynamic behavior of 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 thin film. Both the a domain and the c domain coexist in the ferroelectric thin film nanometer grains. Under the tip-bias-induced electric field, the domain switching follows the two 90° steps of 180° domain switching, showing the domain polarization change from c to a to c. A remarkable effect of temperature on the domain configurations and domain dynamic response in 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 thin film was found by PFM. Under the tip bias voltage of 5 V, domain evolution was more rapid with a higher temperature at 70 ℃. The surface charge is related with c domain polarization. At high temperature, the surface charge induced effective electric filed increases, allowing for the easier domain motion.

Key words0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 ferroelectric thin film    PFM    90° step-by-step domain switching    temperature effect    effective electric field
收稿日期: 2018-03-21     
ZTFLH:  O487  
通讯作者: 何东昱     E-mail: Hedongyu116@163.com
Corresponding author: Dongyu HE     E-mail: Hedongyu116@163.com
作者简介: 何东昱,女,1986年生,博士

引用本文:

何东昱,刘玉欣. 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜90°分步畴转与温度效应[J]. 金属学报, 2019, 55(3): 325-331.
Dongyu HE, Yuxin LIU. PFM Study of the 90° Step-by-Step Domain Switching and the Temperature Effect in 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 Ferroelectric Thin Film. Acta Metall Sin, 2019, 55(3): 325-331.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00107      或      https://www.ams.org.cn/CN/Y2019/V55/I3/325

图1  温度的控制和实验过程及样品的加热降温样品台示意图
图2  0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜的表面形貌和PFM像
图3  0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜表面电畴反转过程的实时PFM像
图4  在5 V直流偏压作用下电畴翻转速率随温度的变化
图5  电畴翻转速率随直流偏压的变化
图6  不同温度0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3薄膜铁电纳米畴结构PFM像
图7  压电响应信号随温度的变化
图8  3种畴转模型
[1] Fu C L. Ferroelectric Thin Film and its Application [M]. Beijing: Science Press, 2009: 23
[1] 符春林. 铁电薄膜材料及其应用 [M]. 北京: 科学出版社, 2009: 23
[2] Khan M A, Caraveo-Frescas J A, Alshareef H N. Hybrid dual gate ferroelectric memory for multilevel information storage [J]. Org. Electron., 2015, 16: 9
[3] Scott J F, translated by Zhu J S. Ferroelectric Memories [M]. Beijing: Tsinghua Press, 2004: 30
[3] Scott J F著, 朱劲松译. 铁电存储器 [M]. 北京: 清华大学出版社, 2004: 30
[4] Dawber M, Rabe K M, Scott J F. Physics of thin-film ferroelectric oxides [J]. Rev. Mod. Phys., 2005, 77: 1083
[5] Jang H W, Ortiz D, Baek S H, et al. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO thin films [J]. Adv. Mater., 2009, 21: 817
[6] Zhong W L. Ferroelectric Physics [M]. Beijing: Science Press, 1996: 45
[6] 钟维烈. 铁电体物理学 [M]. 北京: 科学出版社, 1996: 45
[7] Liu D, Ma C G, Luo H S, et al. Nanoscale insight into the domain structures of high Curie point Pb(In1/2Nb1/2)O3-PbTiO3 single crystal [J]. J. Alloys Compd., 2017, 696: 166
[8] Reichenberg B, Tiedke S, Szot K, et al. Contact mode potentiometric measurements with an atomic force microscope on high resistive perovskite thin films [J]. J. Eur. Ceram. Soc., 2005, 25: 2353
[9] Rocha L S R, Cavalcanti C S, Amoresi R A C, et al. A study approach on ferroelectric domains in BaTiO3 [J]. Mater. Charact., 2016, 120: 257
[10] Bai C L, Tian F, Luo K. Scanning Force Microscopy [M]. Beijing: Science Press, 2000: 7
[10] 白春礼, 田 芳, 罗 克. 扫描力显微术 [M]. 北京: 科学出版社, 2000: 7
[11] Zhao K Y, Zhao W, Zeng H R, et al. Tip-bias-induced domain evolution in PMN-PT transparent ceramics via piezoresponse force microscopy [J]. Appl. Surf. Sci., 2015, 337: 125
[12] Zeng H R, Shimamura K, Villora E G, et al. Domain growth kinetics and wall strain behavior in BaMgF4 ferroelectric crystal by piezoresponse force microscopy [J]. J. Appl. Phys., 2007, 101: 074109
[13] Rodriguez B J, Nemanich R J, Kingon A, et al. Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy [J]. Appl. Phys. Lett., 2005, 86: 012906
[14] Wada S, Kakemoto H, Tsurumi T. Enhanced piezoelectric properties of piezoelectric single crystals by domain engineering [J]. Mater. Trans., 2004, 45: 178
[15] Zhao H Q, Wang J O, Sun C, et al. Multiferroics and electronic structure of (1-x)PbTiO3-xBi(Ni1/2Ti1/2)O3 thin films [J]. Thin Solid Films, 2013, 542: 155
[16] Jiang B, Bai Y, Chu WY, et al. Direct observation on two 90o steps of 180o domain switching in BaTiO3 single crystal under antiparallel electric field [J]. Appl. Phys. Lett., 2008, 93: 152905
[17] Gaynutdinov R V, Mitko S, Yudin S G, et al. Polarization switching at the nanoscale in ferroelectric copolymer thin films [J]. Appl. Phys. Lett., 2011, 99: 142904
[18] Anthoniappen J, Chang W S, Soh A K, et al. Electric field induced nanoscale polarization switching and piezoresponse in Sm and Mn co-doped BiFeO3 multiferroic ceramics by using piezoresponse force microscopy [J]. Acta. Mater., 2017, 132: 174
[19] Yuan G L, Chen J P, Xia H, et al. Ferroelectric domain evolution with temperature in BaTiO3 film on (001) SrTiO3 substrate [J]. Appl. Phys. Lett., 2013, 103: 062903
[20] Zhu Z, Zhu W M. The effect of annealing temperature on the morphology and piezoelectric characteristics of BaTiO3 nanofibers and domain switching under different temperatures [J]. Curr. Appl. Phys., 2018, 18: 886
[21] Huang C W, Chen Z H, Chen L. Thickness-dependent evolutions of domain configuration and size in ferroelectric and ferroelectric-ferroelastic films [J]. J. Appl. Phys., 2013, 113: 094101
[22] Catalan G, Seidel J, Ramesh R, et al. Domain wall nanoelectronics [J]. Rev. Mod. Phys., 2012, 84: 119
[23] Chen J, Sun X Y, Deng J X, et al. Structure and lattice dynamics in PbTiO3-Bi(Zn1/2Ti1/2)O3 solid solutions [J]. J. Appl. Phys., 2009, 105: 044105
[24] Wang J H, Chen C Q. A coupled analysis of the piezoresponse force microscopy signals [J]. Appl. Phys. Lett., 2011, 99: 171913
[25] Liu D, Tian C Y, Ma C G, et al. Composition, electric-field and temperature induced domain evolution in lead-free Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 solid solutions by piezoresponse force microscopy [J]. Scr. Mater., 2016, 123: 64
[26] Shin S, Baek J, Hong J W, et al. Deterministic domain formation observed in ferroelectrics by electrostatic force microscopy [J]. J. Appl. Phys., 2004, 96: 4372
[27] Zhao H, Wu P P, Du L F, et al. Effect of the nanopore on ferroelectric domain structures and switching properties [J]. Comput. Mater. Sci., 2018, 148: 216
[28] Shur V Y, Shikhova V A, Ievlev A V, et al. Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals [J]. J. Appl. Phys., 2012, 112: 064117
[29] He D Y, Qiao L J, Volinsky A A, et al. Electric field and surface charge effects on ferroelectric domain dynamics in BaTiO3 single crystal [J]. Phys. Rev., 2011, 84B: 024101
[1] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[2] 黄鹤飞, 李健健, 刘仁多, 陈怀灿, 闫隆. 316奥氏体不锈钢离子辐照损伤中的温度效应研究[J]. 金属学报, 2014, 50(10): 1189-1194.
[3] 钱友荣;何向东. 高强度钢腐蚀疲劳裂纹扩展的温度效应和过载迟滞效应[J]. 金属学报, 1989, 25(6): 60-64.