Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 851-858    DOI: 10.11900/0412.1961.2015.00600
  论文 本期目录 | 过刊浏览 |
Re对一种定向凝固镍基高温合金微观组织的影响*
张思倩1,王栋2(),王迪2,彭建强3
1 沈阳工业大学材料科学与工程学院, 沈阳 110870。
2 中国科学院金属研究所, 沈阳 110016。
3 哈尔滨汽轮机厂有限责任公司, 哈尔滨 150046。
INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY
Siqian ZHANG1,Dong WANG2(),Di WANG2,Jianqiang PENG3
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China.
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
3 Harbin Turbine Co. Ltd., Harbin 150046, China.
全文: PDF(1805 KB)   HTML
摘要: 

采用SEM, EPMA和TEM等技术对不含Re (0Re)和含2%Re (2Re)的定向柱晶高温合金铸态和热处理态组织进行了系统的研究. 结果表明: Re促进了铸态共晶外围和晶界上μ相的析出; 合金热处理后, Re明显促进了MC碳化物周围和晶界上相的析出, 0Re合金MC碳化物周围只有少量的M6C相析出, 晶界上有细小的M23(C, B)6硼碳化物析出, 而2Re合金MC碳化物周围和晶界上都有大量块状μ相析出, μ相的析出促进了γ′包层的形成. 0Re合金中B元素明显偏聚于晶界, 而2Re合金中B元素分布相对比较均匀. 并对热处理过程中μ相的析出机制进行了深入分析.

关键词 镍基高温合金定向凝固Reμ晶界碳化物    
Abstract

Up to now, considerable effort has been expended in attempts to investigate the influences of Re on Ni-based single crystal superalloys. However, few study had elucidated the influences of Re on carbide, boride and grain boundary. Therefore, the influence of a 2%Re (mass fraction) addition on the as-cast and heat-treated microstructures of a Ni-based directionally solidified superalloy was investigated by comparison with Re-free alloy using SEM, EPMA and TEM. The results show that Re accelerates the precipitation of μ phase in the periphery of eutectic and at grain boundary for as-cast microstructure. After heat treatment, Re also accelerates the precipitation of phase in the vicinity of primary MC carbide and at grain boundary. For 0Re alloy, there are small number of M6C carbide in the vicinity of primary MC carbide and M23(C, B)6 boro-carbide at grain boundary. For 2Re alloy, a large amount of blocky μ phase enveloped by thick γ′-film is found in the vicinity of primary MC carbide and at grain boundary. Enrichment of B along the grain boundary is observed in 0Re alloy. On the contrary, relatively uniform distribution of B is found in 2Re alloy. The precipitation mechanism of μ phase during the process of heat treatment is also analyzed.

Key wordsNi-based superalloy    directional solidification    Re    μ phase    grain boundary    carbide
收稿日期: 2015-11-19     
基金资助:* 国家自然科学基金项目51101160和51501117, 国家重大科学仪器设备开发专项项目2012YQ22023304, 以及辽宁省教育厅项目L2014050资助

引用本文:

张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
Siqian ZHANG, Dong WANG, Di WANG, Jianqiang PENG. INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY. Acta Metall Sin, 2016, 52(7): 851-858.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00600      或      https://www.ams.org.cn/CN/Y2016/V52/I7/851

Alloy Re Cr Co Mo W Al Ti Nb Ta C B Ni
0Re 0 8 9 1 6 5 2 1 2 0.1 0.01 Bal.
2Re 2 8 9 1 6 5 2 1 2 0.1 0.01 Bal.
表1  0Re和2Re定向柱晶高温合金的成分
图1  0Re和2Re合金的共晶外围相
图2  0Re和2Re合金的铸态晶界组织
图3  0Re和2Re合金的枝晶间组织
图4  0Re和2Re合金的热处理态晶界组织
图5  0Re和2Re合金的热处理态B元素EPMA面扫图
表2  0Re和2Re合金析出相的成分
图6  1110 ℃不同时效时间后2Re合金枝晶间形貌
图7  1110 ℃不同时效时间后2Re合金晶界形貌
图8  2Re合金固溶处理后MC碳化物周围的堆垛层错
[1] Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 35
[2] Harris K, Erickson G L, Sikkenga S L, Brentnall W D, Aurrecoechea J M, Kubarych K G.J Mater Eng Perform, 1993; 2: 481
[3] Ross E W, O'Hara K S. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 257
[4] Cetel A D, Duhl D N.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 287
[5] Bürgel R, Grossmann J, Lüseberink O, Mughrabi H, Pyczak F, Singer R F, Volek A.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 25
[6] Harris K, Erickson G L, Schwer R E.In: Gell M, Kortovich C S, Bricknell R H, Kent W B, Radovich J F eds., Superalloys 1984, Warrendale, PA: The Minerals, Materials and Metals Society, 1984: 221
[7] Harris K, Erickon G L, Sikkenga S L, Kubarych K G.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 297
[8] Chen R Z. J Aero Mater, 1993; (1): 47
[8] (陈荣章. 航空材料学报, 1993; (1): 47)
[9] Blavette D, Caron P, Khan T.Scr Mater, 1986; 20: 1395
[10] Warren P J, Cerezo A, Smith G D W.Mater Sci Eng, 1998; A250: 88
[11] Mottura A, Warnken N, Miller M K, Finnis M W, Reed R C.Acta Mater, 2010; 58: 931
[12] Wanderka N, Glatzel U.Mater Sci Eng, 1995; A203: 69
[13] Rüsing J, Wanderka N, Czubayko U, Naundorf V, Mukherji D, R?sler J.Scr Mater, 2002; 46: 235
[14] Epishin A, Bruckner U, Portella P D, Link T.Scr Mater, 2003; 48: 455
[15] Fu C L, Reed R, Janotti A, Krcmar M.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 867
[16] Luo Y S, Li J R, Liu S Z, Sun F L, Han X M, Cao C X.Chin J Nonferrous Met, 2005; 15: 1655
[16] (骆宇时, 李嘉荣, 刘世忠, 孙凤礼, 韩秀梅, 曹春晓. 中国有色金属学报, 2005; 15: 1655)
[17] Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F, Zhang Z F.Mater Sci Eng, 2014; A603: 84
[18] Zhang Y D, Yang Z G, Zhang C, Lan H.Chin J Aero, 2010; 23: 370
[19] Wang M G, Tian S G, Yu H C, Yu X F, Qian B J.J Aero Mater, 2009; 29(4): 98
[19] (王明罡, 田素贵, 于慧臣, 于兴福, 钱本江. 航空材料学报, 2009; 29(4): 98)
[20] Li J R, Tang D Z, Chen R Z.J Mater Eng, 1997; (8): 3
[20] (李嘉荣, 唐定中, 陈荣章. 材料工程, 1997; (8): 3)
[21] Darolia R, Lahrman D F, Field R D.In: Reichman S, Duhl D N, Maurer S, Antolovich S, Lund C eds., Superalloys 1988, Warrendale, PA: The Minerals, Materials and Metals Society, 1988: 255
[22] Walston W S, Schaeffer J C, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale, PA: The Minerals, Materials and Metals Society, 1996: 9
[23] Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale, PA: The Minerals, Materials and Metals Society, 1996: 27
[24] Pollock T M, Murphy W H, Goldman E H, Uram D L, Tu J S.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 125
[25] Kong Y H, Chen Q Z.Mater Sci Eng, 2004; A366: 135
[1] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[4] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[5] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[6] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[7] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[8] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[9] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[10] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[11] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[12] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[13] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[14] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[15] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.