Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 851-858    DOI: 10.11900/0412.1961.2015.00600
  论文 本期目录 | 过刊浏览 |
Re对一种定向凝固镍基高温合金微观组织的影响*
张思倩1,王栋2(),王迪2,彭建强3
1 沈阳工业大学材料科学与工程学院, 沈阳 110870。
2 中国科学院金属研究所, 沈阳 110016。
3 哈尔滨汽轮机厂有限责任公司, 哈尔滨 150046。
INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY
Siqian ZHANG1,Dong WANG2(),Di WANG2,Jianqiang PENG3
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China.
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
3 Harbin Turbine Co. Ltd., Harbin 150046, China.
引用本文:

张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
Siqian ZHANG, Dong WANG, Di WANG, Jianqiang PENG. INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY[J]. Acta Metall Sin, 2016, 52(7): 851-858.

全文: PDF(1805 KB)   HTML
摘要: 

采用SEM, EPMA和TEM等技术对不含Re (0Re)和含2%Re (2Re)的定向柱晶高温合金铸态和热处理态组织进行了系统的研究. 结果表明: Re促进了铸态共晶外围和晶界上μ相的析出; 合金热处理后, Re明显促进了MC碳化物周围和晶界上相的析出, 0Re合金MC碳化物周围只有少量的M6C相析出, 晶界上有细小的M23(C, B)6硼碳化物析出, 而2Re合金MC碳化物周围和晶界上都有大量块状μ相析出, μ相的析出促进了γ′包层的形成. 0Re合金中B元素明显偏聚于晶界, 而2Re合金中B元素分布相对比较均匀. 并对热处理过程中μ相的析出机制进行了深入分析.

关键词 镍基高温合金定向凝固Reμ晶界碳化物    
Abstract

Up to now, considerable effort has been expended in attempts to investigate the influences of Re on Ni-based single crystal superalloys. However, few study had elucidated the influences of Re on carbide, boride and grain boundary. Therefore, the influence of a 2%Re (mass fraction) addition on the as-cast and heat-treated microstructures of a Ni-based directionally solidified superalloy was investigated by comparison with Re-free alloy using SEM, EPMA and TEM. The results show that Re accelerates the precipitation of μ phase in the periphery of eutectic and at grain boundary for as-cast microstructure. After heat treatment, Re also accelerates the precipitation of phase in the vicinity of primary MC carbide and at grain boundary. For 0Re alloy, there are small number of M6C carbide in the vicinity of primary MC carbide and M23(C, B)6 boro-carbide at grain boundary. For 2Re alloy, a large amount of blocky μ phase enveloped by thick γ′-film is found in the vicinity of primary MC carbide and at grain boundary. Enrichment of B along the grain boundary is observed in 0Re alloy. On the contrary, relatively uniform distribution of B is found in 2Re alloy. The precipitation mechanism of μ phase during the process of heat treatment is also analyzed.

Key wordsNi-based superalloy    directional solidification    Re    μ phase    grain boundary    carbide
收稿日期: 2015-11-19     
基金资助:* 国家自然科学基金项目51101160和51501117, 国家重大科学仪器设备开发专项项目2012YQ22023304, 以及辽宁省教育厅项目L2014050资助
Alloy Re Cr Co Mo W Al Ti Nb Ta C B Ni
0Re 0 8 9 1 6 5 2 1 2 0.1 0.01 Bal.
2Re 2 8 9 1 6 5 2 1 2 0.1 0.01 Bal.
表1  0Re和2Re定向柱晶高温合金的成分
图1  0Re和2Re合金的共晶外围相
图2  0Re和2Re合金的铸态晶界组织
图3  0Re和2Re合金的枝晶间组织
图4  0Re和2Re合金的热处理态晶界组织
图5  0Re和2Re合金的热处理态B元素EPMA面扫图
表2  0Re和2Re合金析出相的成分
图6  1110 ℃不同时效时间后2Re合金枝晶间形貌
图7  1110 ℃不同时效时间后2Re合金晶界形貌
图8  2Re合金固溶处理后MC碳化物周围的堆垛层错
[1] Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 35
[2] Harris K, Erickson G L, Sikkenga S L, Brentnall W D, Aurrecoechea J M, Kubarych K G.J Mater Eng Perform, 1993; 2: 481
[3] Ross E W, O'Hara K S. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 257
[4] Cetel A D, Duhl D N.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 287
[5] Bürgel R, Grossmann J, Lüseberink O, Mughrabi H, Pyczak F, Singer R F, Volek A.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 25
[6] Harris K, Erickson G L, Schwer R E.In: Gell M, Kortovich C S, Bricknell R H, Kent W B, Radovich J F eds., Superalloys 1984, Warrendale, PA: The Minerals, Materials and Metals Society, 1984: 221
[7] Harris K, Erickon G L, Sikkenga S L, Kubarych K G.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 297
[8] Chen R Z. J Aero Mater, 1993; (1): 47
[8] (陈荣章. 航空材料学报, 1993; (1): 47)
[9] Blavette D, Caron P, Khan T.Scr Mater, 1986; 20: 1395
[10] Warren P J, Cerezo A, Smith G D W.Mater Sci Eng, 1998; A250: 88
[11] Mottura A, Warnken N, Miller M K, Finnis M W, Reed R C.Acta Mater, 2010; 58: 931
[12] Wanderka N, Glatzel U.Mater Sci Eng, 1995; A203: 69
[13] Rüsing J, Wanderka N, Czubayko U, Naundorf V, Mukherji D, R?sler J.Scr Mater, 2002; 46: 235
[14] Epishin A, Bruckner U, Portella P D, Link T.Scr Mater, 2003; 48: 455
[15] Fu C L, Reed R, Janotti A, Krcmar M.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 867
[16] Luo Y S, Li J R, Liu S Z, Sun F L, Han X M, Cao C X.Chin J Nonferrous Met, 2005; 15: 1655
[16] (骆宇时, 李嘉荣, 刘世忠, 孙凤礼, 韩秀梅, 曹春晓. 中国有色金属学报, 2005; 15: 1655)
[17] Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F, Zhang Z F.Mater Sci Eng, 2014; A603: 84
[18] Zhang Y D, Yang Z G, Zhang C, Lan H.Chin J Aero, 2010; 23: 370
[19] Wang M G, Tian S G, Yu H C, Yu X F, Qian B J.J Aero Mater, 2009; 29(4): 98
[19] (王明罡, 田素贵, 于慧臣, 于兴福, 钱本江. 航空材料学报, 2009; 29(4): 98)
[20] Li J R, Tang D Z, Chen R Z.J Mater Eng, 1997; (8): 3
[20] (李嘉荣, 唐定中, 陈荣章. 材料工程, 1997; (8): 3)
[21] Darolia R, Lahrman D F, Field R D.In: Reichman S, Duhl D N, Maurer S, Antolovich S, Lund C eds., Superalloys 1988, Warrendale, PA: The Minerals, Materials and Metals Society, 1988: 255
[22] Walston W S, Schaeffer J C, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale, PA: The Minerals, Materials and Metals Society, 1996: 9
[23] Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale, PA: The Minerals, Materials and Metals Society, 1996: 27
[24] Pollock T M, Murphy W H, Goldman E H, Uram D L, Tu J S.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 125
[25] Kong Y H, Chen Q Z.Mater Sci Eng, 2004; A366: 135
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[9] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[10] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[11] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[12] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[13] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[14] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[15] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.