Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1510-1519    DOI: 10.3724/SP.J.1037.2012.00486
  论文 本期目录 | 过刊浏览 |
新的单参数动态再结晶动力学建模及晶粒尺寸预测
刘娟1,李居强1,崔振山1,阮立群2
1. 上海交通大学模具CAD国家工程研究中心, 上海 200030
2. 熊本大学机械工程系, 熊本  日本
A NEW ONE–PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION
LIU Juan 1, LI Juqiang 1, CUI Zhenshan 1, RUAN Liqun 2
1. National Engineering Research Center of Die & Mold CAD, Shanghai Jiao Tong University, Shanghai 200030
2. Department of Mechanical Engineering, Kumamoto University, Kumamoto, Japan
引用本文:

刘娟 李居强 崔振山 阮立群. 新的单参数动态再结晶动力学建模及晶粒尺寸预测[J]. 金属学报, 2012, 48(12): 1510-1519.
LIU Juan LI Juqiang CUI Zhenshan RUAN Liqun. A NEW ONE–PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION[J]. Acta Metall Sin, 2012, 48(12): 1510-1519.

全文: PDF(2927 KB)  
摘要: 

通过引入动态再结晶的演化速率, 分析了基于Avrami方程的经典动态再结晶动力学模型的不足, 提出了一种新的具有单参数的动态再结晶动力学模型, 反映了动态
再结晶过程缓慢--快速--缓慢的特点. 采用Gleeble-1500热模拟试验机,对典型的具有动态再结晶特性的材料镁合金AZ31B进行了热压缩实验,通过进行参数回归得到了其动态再结晶动力学模型, 并与实验结果相对比,验证了该模型的正确性. 进一步将稳态变形条件下获得的微观组织演化模型改写成分步叠加形式, 与动态再结晶晶粒尺寸模型相结合, 应用到非稳态条件的晶粒预测, 模拟与实验的对比表明计算结果和定量金相法所获得的结果基本一致,说明了非稳态变形过晶粒的叠加预测方法的合理性.

关键词 动态再结晶 再结晶分数 动力学模型 镁合金AZ31B    
Abstract

Dynamic recrystallization (DRX) is considered as one of the most important microstructural evolution mechanisms to obtain fine metallurgical structures, eliminate defects and improve mechanical properties of products. Although the DRX kinetics models proposed by researchers have some differences in parameters and forms, they are all based on the Avrami function describing the relationship between dynamically recrystallized volume fraction and strain or time. Avrami equation is in the form of exponential function and the kinetics curve of DRX exhibits different when the exponent is assumed to be different (between 1 and 2). Under these conditions, however, the exponential function cannot exactly describe the "slow–rapid–slow"property of the development speed of DRX process. By introducing the velocity of development of DRX process, which is referred to as the variation of the dynamically recrystallized volume fraction with strain, namely, the first partial derivative of the dynamically recrystallized volume fraction to strain, a new kinetics model of DRX was proposed in comparison with the classical kinetics model of DRX. The new model represents the characteristics of DRX: the dynamically recrystallized volume fraction equals zero when the strain is smaller than the critical strain, and the maximum of the dynamically recrystallized volume fraction equals 1; once the strain exceeds the critical strain, the dynamically recrystallized volume fraction slowly increases first, and then rapidly increases, at last slowly increases. Consequently, the new kinetics model is in agreement with the development law of DRX process and includes few parameters which have clear physical meaning and are easy to determine. By conducting Gleeble–1500 thermomechanical simulation compression tests at the temperatures ranging from 523 to 673 K and at the strain rates 0.001, 0.01, 0.1 and 1 s−1, the kinetics model for Mg alloy AZ31B characterized by DRX for instance was built and parameters were determined. Microscopic examination shows that the experimental results are in good agreement with the predicted values, which validates the accuracy of the new kinetics model.Then combined with grain size of DRX model, the kinetic model built under steady state conditions was rewritten as superimposed step form to apply in the prediction of grain size under unsteady state conditions. The simulated data accord with the experimental results by means of quantitative metallography, which verified the rationality of the superimposed prediction method. 

Key wordsdynamic recrystallization (DRX)    dynamically recrystallized volume fraction    kinetics model    magnesium alloy AZ31B
收稿日期: 2012-08-16     
ZTFLH:  TG146  
基金资助:

国家科技重大专项项目2012ZX04012-011以及国家自然科学基金项目50905110资助

作者简介: 刘娟, 女, 1976生, 副研究员

[1] Sellars C M. Mater Sci Tech Ser, 1990; 6: 1072

[2] Sellars C M, Whiteman J A. Met Sci, 1979; 13(3–4): 187

[3] McQueen H J, Yue S, Ryan N D, Fry E. J Mater Process Tech, 1995; 53: 293

[4] Devadas C, Samarasekera I V, Hawbolt E B. Metall Trans, 1991; 22A: 335

[5] Kim S, Lee Y, Lee D, Yoo Y. Mater Sci Eng, 2003; A355: 384

[6] Kim S, Yoo Y. Mater Sci Eng, 2001; A311: 108

[7] Kopp R, Karnhausen K, de Souza M. Scand J Met, 1991; 20: 351

[8] Laasraoui A, Jonas J J. Metall Trans, 1991; 22A(7): 151

[9] Serajzadeh S, Taheri A K. Mech Res Commun, 2003; 30: 87

[10] Avedesian M M, Baker H. United States of America: ASMInternational, 1999: 3

[11] McQueen H J. Mater Sci Eng, 2004; A387–389: 203

[12] Tan J C, Tan M J. Mater Sci Eng, 2003; A339: 124

[13] Mwembela A, Konopleva E B, McQueen H J. Scr Mater, 1997; 37: 1789

[14] Barnett M R, Beer A G, Atwell D, Oudin, A. Scr Mater, 2004; 51: 19

[15] Zhou H T. PhD Thesis, Shanghai Jiao Tong University, 2004

(周海涛. 上海交通大学博士论文, 2004)

[16] Liu J, Cui Z, Li C. Comp Mater Sci, 2008; 41: 375

[17] Bergstrom Y. Mater Sci Eng, 1969/1970; (5): 193

[18] Liu J, Cui Z, Ruan L. Mater Sci Eng, 2011; A529: 300

[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[6] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[8] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[9] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[10] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[11] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[12] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[13] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[14] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[15] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.