Please wait a minute...
金属学报  2010, Vol. 46 Issue (11): 1428-1442    DOI: 10.3724/SP.J.1037.2010.00487
  综述 本期目录 | 过刊浏览 |
材料显微研究新视野
朱静1), 叶恒强2)
1) 清华大学材料系北京电子显微镜中心, 北京 100084
2) 中国科学院金属研究所沈阳材料科学(联合)国家实验室, 沈阳 110016
INSIGHT FOR MICROSTRUCTURE RESEARCH OF MATERIALS
ZHU Jing1), YE Hengqiang2)
1) Beijing National Center for Electron Microscopy, Department of Material Science and Engineering, Tsing Hua University, Beijing 100084
2) Shenyang National Lab for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

朱静 叶恒强. 材料显微研究新视野[J]. 金属学报, 2010, 46(11): 1428-1442.
, . INSIGHT FOR MICROSTRUCTURE RESEARCH OF MATERIALS[J]. Acta Metall Sin, 2010, 46(11): 1428-1442.

全文: PDF(1421 KB)  
摘要: 在原子尺度观察组织结构并理解它和性质之间的关系是物质科学追求的目标之一. 纳米科技、信息器件微型化、先进制造精密化等领域的快速发展, 对材料显微表征深入到原子排列、电子结构层次起到了重要的推动作用. 集形貌观察、结构诠释、元素分析于一身的透射电子显微镜近年来因像差校正器的突破而有望将上述三项功能都推进到原子分辨水平. 本文介绍像差校正电子显微镜给材料显微研究带来的新契机: (1)像差校正电子显微学(提高分辨率、减少离位效应、负球差成像、系列离焦像); (2)走向原子柱元素分辨的化学分析; (3)三维原子像; (4)复杂结构的界面; (5)时间分辨电子显微术; (6)电子全息; (7)原位电子显微术(较大极靴间隙).
关键词 表征像差校正电子显微学    
Abstract:In matter science to observe the structure and to understand it's correlation with property in atomic scale is among the aims. Nano-science and technology, microminiaturization of IT devices, higher precision in advanced manufacture $etc$. play an important role to promote microscopic characterization to go deeply to atomic and even electronic level. Based upon the break-through of the aberration corrector the three functions of morphology observation, crystal structure determination and element analysis, provided by transmission electron microscope in recent years have expected to reach atomic resolution standard. Here we introduce the capabilities and prospects for microstructure characterization of materials with these new electron microscopes: (1) aberration-corrected electron microscopy (improving resolution; reducing delocalization effect; negative spherical aberration imaging; defocus-series processing images); (2) a high-resolution probe for imaging and spectroscopy; (3) three-dimensional atomic imaging; (4) interfaces in the complicated structure; (5) time resolution electron microscopy; (6) electron holography; (7) in situ electron microscopy with larger gap in pole piece.
Key wordscharacterization    aberration-corrector    transmission electron microscopy
收稿日期: 2010-09-19     
作者简介: 朱静, 女, 1938年生, 教授, 中国科学院院士
[1] Li D X, Ping D H, Ye H Q, Qin X Y,Wu X J. Mater Lett, 1993; 18: 29 [2] Watanabe M, Ackland D W, Burrows A, Kiely C J, Williams D B, Krivanek O L, Dellby N, Murfitt M F, Szilagyi Z. Microsc Microanal, 2006; 12: 515 [3] Erni R, Browning N D. In: Tanaka N, Takano Y, Mori H, Seguchi H, Iseki S, Shimada H, Simamura E, eds., Proc Asia–Pacific Conference on Electron Microscopy (8 APEM), Kanazawa: 8 APEM Publication Committee, 2004: 130 [4] Seidel L. Astr Nachr, 1856; 43: 289 [5] Klein M V. Optics. Wiley, Chichester, Sussex, UK, 1970: 141 [6] Scherzer O. Z Phys, 1936; 101: 23 [7] Scherzer O. Optik, 1948; 4: 258 [8] Septier A. In: Valdre U, ed., Electron Microscopy in Material Science. Chapter 2, Academic Press New York and London, 1971: 14 [9] Krivanek O L, Ursin J P, Bacon N J, Corbin G J, Dellby N, Hrncirik P, Murfitt M F, Own C S, Szilagyi Z S. Philos Trans R Soc, 2009; 367A: 3683 [10] Rayleigh L. Philos Mag, 1879; 8: 463 [11] Haider M, Muller H, Uhlemann S, Zach J, Loebau U, Hoeschen R. Ultramicroscopy, 2008; 108: 167 [12] Haider M, Hartel P, M¨uller H, Uhlemann S, Zach J. Philos Trans R Soc, 2009; 367A: 3665 [13] Zach J, Haider M. Optik, 1995; 98: 112 [14] Dellby N, Krivanek O L, Nellist P D, Batson P E, Lupini R. JEM, 2001; 50(3): 177 [15] Krivanek O L, Corbin G J, Dellby N, Elston B F, Keyse R J, Murfitt M F, Own C S, Szilagyi Z S, Woodruff J W. Ultramicroscopy, 2008; 108: 179 [16] Erni R, Rossell M D, Kisielowski C, Dahmen U. Phys Rev Lett, 2009; 102: 096101 [17] Ling T, Xie L, Zhu J, Yu H M, Ye H Q, Yu R, Cheng Z Y, Liu L, Yang G W, Cheng Z D,Wang Y J, Ma X L. Nano Lett, 2009; 9: 1572 [18] Lu N, Yu R, Chen Z Y, Pai Y J, Zhang X W, Zhu J. Appl Phys Lett, 2010; 96: 221905 [19] Urban K W, Jia C L, Houben L, Lentzen M, Mi S B, Tillmann K. Philos Trans R Soc, 2009; 367A: 3735 [20] Houben L, Thust A, Urban K. Ultramicroscopy, 2006; 106: 200 [21] Coene W, Janssen G, Op de Beek M, Van Dyck D. Phys Rev Lett, 1992; 69: 3743 [22] OKeefe M A. Ultramicroscopy, 2008; 108: 196 [23] Muller D A, Kourkoutis L F, Murfitt M, Song J H, Hwang H Y, Silcox J, Dellby N, Krivanek O L. Science, 2008; 319: 1073 [24] Born Max, Wolf Emil. Translated by Yang X S et al. Principles of Optics. 5th Ed., Beijing: Science Press, 1978: 578 (Born Max, Wolf Emil 著; 杨葭荪 等译. 光学原理. 北京: 科学出版社, 1978: 578) [25] Dahmen U, Erni R, Radmilovic V, Ksielowski C, Rossell M D, Denes P. Philos Trans R Soc, 2009; 367A: 3795 [26] Chisholm M F, Kumar S, Hazzledine P. Science, 2005; 307: 701 [27] King W E, Cambell G H, Frank A, Reed B, Schmerge J F, Siwick B J, Staart B C, Weber P M. J Appl Phys, 2005; 97: 11110 [28] Masiel D J, Reed B W, LaGrange T B, Campbell G H, Guo T, Browning N D. Chem Phys Chem, 2010; 11: 208 [29] Gabor D. Nature, 1948; 161: 777 [30] Lichte H, Geiger D, Linck M. Philos Trans R Soc, 2009; 367A: 3773 [31] Ye H Q, Wang Y M. Progress in Transmission Electron Microscopy. Chapter B5, Beijing: Science Press, 2003: 217 (叶恒强, 王元明 主编. 透射电子显微学进展. 第B5章, 北京: 科学出版社, 2003: 217) [32] Lichte H, Formanek P, Lenk A, Linck M, Matzeck C, Lehmann M, Simon P. Annu Rev Mater Res, 2007; 37: 539 [33] McCartney M R, Agarwal N, Chung S, Cullen D A, Han M G, He K, Li L Y,Wang Ha, Zhou L, Smith D J. Ultramicroscopy, 2010; 110: 375
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 卢毓华, 王海舟, 李冬玲, 付锐, 李福林, 石慧. 基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法[J]. 金属学报, 2023, 59(7): 841-854.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[5] 张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
[6] 陈虹宇, 宋欣, 周相龙, 贾文涛, 袁涛, 马天宇. Sm2Co17磁体胞状组织边缘2:17R'相的透射电子显微镜表征[J]. 金属学报, 2021, 57(12): 1637-1644.
[7] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.
[8] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[9] 张学习, 郑忠, 高莹, 耿林. 金属基复合材料高通量制备及表征技术研究进展[J]. 金属学报, 2019, 55(1): 109-125.
[10] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出过程的小角度X射线散射定量表征[J]. 金属学报, 2017, 53(8): 897-906.
[11] 杨文,张立峰,任英,段豪剑,张莹,肖向辉. 利用高分辨同步辐射Micro-CT定量三维表征含Ti铁素体不锈钢铸坯中氧化物夹杂*[J]. 金属学报, 2016, 52(2): 217-223.
[12] 陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*[J]. 金属学报, 2016, 52(12): 1545-1556.
[13] 刘文庆,刘庆冬,顾剑锋. 原子探针层析技术(APT)最新进展及应用[J]. 金属学报, 2013, 49(9): 1025-1031.
[14] 赵世贤 宋晓艳 刘雪梅 魏崇斌 王海滨 高杨. 超细晶硬质合金显微组织参数与力学性能定量关系的研究[J]. 金属学报, 2011, 47(9): 1188-1194.
[15] 刘林林 李曙 刘阳 . 几种合成高铼酸盐的减摩行为[J]. 金属学报, 2010, 46(2): 233-238.