Please wait a minute...
金属学报  2010, Vol. 46 Issue (8): 897-906    DOI: 10.3724/SP.J.1037.2010.00108
  论文 本期目录 | 过刊浏览 |
Ru和Cr对镍基单晶高温合金γ/γ'热处理组织演变的影响
陈晶阳1,赵宾1,冯强1,2,曹腊梅3,孙祖庆1
1. 北京科技大学, 新金属材料国家重点实验室, 北京 100083
2. 北京科技大学, 国家材料服役安全科学中心, 北京 100083
3. 北京航空材料研究院, 先进高温结构材料国防科技重点实验室, 北京 100095
EFFECTS OF Ru AND Cr ON γ/γ' MICROSTRUCTURAL EVOLUTION OF Ni–BASED SINGLE CRYSTAL SUPERALLOYS DURING HEAT TREATMENT
CHEN Jingyang 1, ZHAO Bin 1, FENG Qiang 1,2, CAO Lamei 3, SUN Zuqing 1
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083
2. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
3. National Key Laboratory of Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

陈晶阳 赵宾 冯强 曹腊梅 孙祖庆. Ru和Cr对镍基单晶高温合金γ/γ'热处理组织演变的影响[J]. 金属学报, 2010, 46(8): 897-906.
, , , , . EFFECTS OF Ru AND Cr ON γ/γ' MICROSTRUCTURAL EVOLUTION OF Ni–BASED SINGLE CRYSTAL SUPERALLOYS DURING HEAT TREATMENT[J]. Acta Metall Sin, 2010, 46(8): 897-906.

全文: PDF(3641 KB)  
摘要: 

通过对6种不同Ru (0-5.1%, 质量分数, 下同)和Cr (0-5.7%)含量的镍基单晶高温合金1100 ℃的时效和热处理组织观察与γ/γ'两相的成分分析,研究了Ru和Cr的独立和交互作用对合金元素成分分配比及热处理组织演变的影响.经1100 ℃/8 h时效后, 在枝晶干处, 不含Ru和Cr的基础合金γ'相接近球形,Re在该合金γ/γ'两相中的成分分配比较低, 错配度接近于0.在基础合金中加入高Ru后, γ'相立方度和Re的成分分配比略有增大,错配度变负; 在不含Ru合金与含Ru合金中, 随着Cr含量的增大, γ'相的立方度和Re的成分分配比均显著增大, 错配度明显变负.1100 ℃非加载下的长期热处理研究表明: γ'相接近球形且错配度接近于0的合金γ'相形貌稳定, 在2000 h内只出现了粗化,没有发生筏排化现象; γ'相呈中间态并且错配度较小的合金γ'相粗化趋势较为明显; γ'相接近立方体形且错配度中等的合金在热处理800 h后形成近似筏排组织; 同时加入Ru和Cr, 随着Re的成分分配比和错配度的增大,γ'相为立方体形或长方体形的合金筏排化时间提前; 其中高Ru中Cr合金热处理200 h就出现筏排化趋势, 而错配度最高的高Ru高Cr合金热处理仅50 h就形成筏排组织.

关键词 高温合金 Ru Cr γ'相形貌 成分分配比 点阵错配度    
Abstract

The influences of Ru and Cr as well as their interaction on the elemental partitioning ratio and microstructural evolution have been investigated in six Ni–based single crystal experimental superalloys with various levels of Ru (0—5.1%) and Cr (0—5.7%) additions (mass fraction). The results indicate that γ′ precipitates are nearly spherical in the dendrite core of the base alloy (Ru and Cr–free), which has a low Re partitioning ratio and near zero lattice misfit, after aging treatment at 1100 ℃ for 8 h. The lattice misfit and Re partitioning ratio increase slightly and the γ′ precipitates change to be more cuboidal with the addition of 5.1%Ru in both Cr–free and Cr–containing alloys. Meanwhile, the Re partitioning ratio increases significantly with increasing the Cr content in both Ru–free and Ru–containing alloys, which in turn results in more negative lattice misfit and more cuboidal γ′ precipitates. After long–term thermal exposure at 1100 ℃, the nearly spherical γ′ precipitates with near zero lattice misfit in the alloy have no change in morphology, and are coarsened after a longer exposure time, while the alloy with intermediate γ′ precipitates and low lattice misfit is coarsened more severely. However, a nearly–rafted structure tend to form in the alloy with nearly cuboidal′ precipitates and intermediate misfit after heat treatment for 800 h. The time to form the rafted structure is significantly reduced in the alloys containing both Ru and Cr with high Re partitioning ratio and high lattice misfit as well as cuboidal or rectangular γ′ precipitates. The alloy containing high Ru and intermediate Cr exhibits a rafted trend after heat treatment for 200 h while the rectangular γ′ precipitates are rafted after heat treatment for only 50 h in the alloy containing high levels of Ru and Cr additions with the highest lattice misfit.

Key wordssuperalloys    Ru    Cr    γ&prime    morphology    elemental partitioning ratio    lattice misfit
收稿日期: 2010-03-04     
基金资助:

国家自然科学基金项目 50671015, 教育部“新世纪优秀人才支持计划”项目NCET-06-0079, 国家高技术研究发展计划项目2007AA03A225和国家重点基础研究发展计划项目2010CB631201 资助

作者简介: 陈晶阳, 男, 1979年生, 博士生
[1]Hu Z Q, Liu L R, Jin T, Sun X F. Aerial Engine, 2005; 31(3): 1 (胡壮麒, 刘丽荣, 金涛, 孙晓峰. 航空发动机, 2005; 31(3): 1) [2]Pollock T M, Tin S. J. Propul. Power., 2006; 22(2): 361 [3]Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A, eds., Superalloys 1996, Champion, PA: TMS, 1996: 27 [4]Walston S, Cetel A, MacKay R, O'Hara K, Duhl D, Dreshfield R. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 15 [5]Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J, eds., Superalloys 2000, Champion, PA: TMS, 2000: 737 [6]Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 35 [7]Feng Q, Nandy T K, Tin S, Pollock T M. Acta Mater, 2003; 51(1): 269 [8]O'Hara K S, Walston W S, Ross E W, Darolia R. US Pat, 5482789, 1996 [9]Hobbs R A, Zhang L, Rae C M F, Tin S. Metall Mater Trans A, 2008; 39(5): 1014 [10]Yeh A C, Rae C M F, Tin S. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 677 [11]Zhang J X, Murakumo T, Harada H, Koizumi Y, Kobayashi T. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 189 [12]Zheng Y R, Wang X P, Dong J X, Han Y F, Murakami H, Harada H. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J, eds., Superalloys 2000, Champion, PA: TMS, 2000: 305 [13]Zheng L, Gu C Q, Zheng Y R. Mater Eng, 2002; (5): 3 (郑亮, 谷臣清, 郑运荣. 材料工程. 2002; (5): 3) [14]Ren Y L, Jin T, Guan H R, Hu Z Q. Mater Mech Eng, 2004; (5): 10 (任英磊, 金涛, 管恒荣, 胡壮麒. 机械工程材料. 2004; 28(3): 10) [15]Wang W Z, Jin T, Liu J L, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, A, 2008; 479(1-2): 148 [16]F?hrmann M, Fratzl P, Paris O, Fahrmann E, Johnson W C. Acta Metall Mater, 1995; 43(3): 1007 [17]Wang T, Sheng G, Liu Z K, Chen L Q. Acta Mater, 2008; 56(19): 5544 [18]Ren H L. Technology of Metallographic Experiment. Beijing: Metallurgy Industry Press, 2006: 159 (任怀亮. 金相实验技术. 北京: 冶金工业出版社, 1986: 159) [19]Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19(1-2): 35 [20]Wagner C. Z. Elektrochem, 1961; 65(7-8): 581 [21]Hobbs R A, Brewster G J, Rae C M F, Tin S. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008, Champion, PA: TMS, 2008: 171 [22]Pollock T M, Argon A S. Acta Metall Mater, 1994; 42(6): 1859 [23]Smith J, PhD Thesis, University of Illinois at Urbana-Champaign, 1987 [24]Huang W, Chang Y A. Mater Sci Eng A, 1999; 259(1): 110 [25]Dreshfield R L, Thomas K J. NASA Report TM-2005-213288. 2005 [26]Carroll L J, Feng Q, Mansfield J F, Pollock T M. Mater Sci Eng A, 2007; 457(1-2): 292 [27]Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 787 [28]Reed R C, Yeh A C, Tin S, Babu S S, Miller M K. Scripta Mater, 2004; 51(4): 327 [29]Volek A, Pyczak F, Singer R F, Mughrabi H. Scripta Mater, 2005; 52(2): 141 [30]Gale W F, Totemeir T C, Smithells C J. Smithells Metals Reference Book. 8th ed. Oxford: Butterworth-Heinemann, 2004: 4-44 [31]Carroll L J, Feng Q, Pollock T M. Metall Mater Trans A, 2008; 39(6): 1290 [32]Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans A, 2006; 37(10): 2927 [33]Chen J Y, Zhao B, Feng Q, Cao L M. In: Joseph R, Omer D, Donna B, Shiela W, eds., San Francisco, CA: TMS, 2009: 233
[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[6] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[8] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[9] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[10] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[11] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[12] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[13] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[14] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.