Please wait a minute...
金属学报  2010, Vol. 46 Issue (9): 1041-1046    DOI: 10.3724/SP.J.1037.2009.00833
  论文 本期目录 | 过刊浏览 |
Mg-Gd-Zn-Zr合金中的LPSO结构和时效相
曾小勤1, 2), 吴玉娟1, 2, 3), 彭立明1, 2), 林栋樑1, 2), 丁文江1, 2), 彭赢红3)
1) 上海交通大学材料科学与工程学院轻合金精密成型国家工程研究中心, 上海 200240
2) 上海交通大学材料科学与工程学院金属基复合材料国家重点实验室, 上海 200240
3) 上海交通大学机械与动力工程学院, 上海 200240
LPSO STRUCTURE AND AGING PHASES IN Mg-Gd-Zn-Zr ALLOY
ZENG Xiaoqin1, 2), WU Yujuan1, 2, 3),  PENG Liming1, 2), LIN Dongliang1, 2),  DING Wenjiang1, 2), PENG Yinghong3)
1) National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2) The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
3) School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240
引用本文:

曾小勤 吴玉娟 彭立明 林栋樑 丁文江 彭赢红. Mg-Gd-Zn-Zr合金中的LPSO结构和时效相[J]. 金属学报, 2010, 46(9): 1041-1046.
, , , , . LPSO STRUCTURE AND AGING PHASES IN Mg-Gd-Zn-Zr ALLOY[J]. Acta Metall Sin, 2010, 46(9): 1041-1046.

全文: PDF(979 KB)  
摘要: 

为了研究Mg-Gd-Zn-Zr合金中的长周期堆垛有序(LPSO)结构的形成及其演化, 对铸态、固溶态和时效态Mg96.32Gd2.50Zn1.00Zr0.18合金的显微组织进行了观察. OM, SEM和TEM观察表明, 合金铸态组织由α-Mg固溶体、晶内层片状14H-LPSO结构和晶界处树枝状α-Mg+β-(Mg, Zn)3Gd共晶相组成; 500 ℃/35 h固溶处理后, 晶界处发生β→X的固态相变, 层片状X相也具有14H-LPSO结构; 再经200 ℃/128 h 峰时效处理后, 晶内析出椭球状β相和片状β1相与14H-LPSO结构共存. 室温拉伸实验和Vickers硬度测试表明, 500 ℃/35 h+200 ℃/128 h处理改善了合金的力学性能, 抗拉强度为290.7 MPa, 屈服强度为162.5 MPa, Vickers硬度为108.0 HV, 延伸率为10.4%. 力学性能的改善与晶界、晶内的14H-LPSO结构及时效相等复合强韧化作用有关.

关键词 Mg-Gd-Zn-Zr合金长周期堆垛有序(LPSO)结构层片状时效处理    
Abstract

At present, long period stacking ordered (LPSO) structures in Mg-RE-Zn (RE=Y, Dy, Ho, Er, Gd, Tb, Tm) alloys have been focused on. According to some reports, Mg-Gd-Zn alloys are classified as type II, i.e., there are no LPSO structures in as-cast alloys, but LPSO structures appear after heat treatment. To further study the formation of LPSO structure in Mg-Gd-Zn(Zr)\linebreak alloys, a Mg96.32Gd2.50Zn1.00Zr0.18 alloy was prepared by ingot metallurgy (I/M) in this work. Based on OM, SEM and TEM observations, the as-cast microstructure of Mg-Gd-Zn-Zr alloy consists of α-Mg solid solution, lamellar 14H-type LPSO structure within α-Mg grains and dendritic eutectic structure at grain boundaries, in which the eutectic phase is the β-phase ((Mg, Zn)3Gd)), thus, Mg-Gd-Zn(Zr) alloys should be attributed to type I, i.e., there are LPSO structures in as-cast alloys. During solid solution treatment at 500 ℃ for 35 h, a solid transformation, dendritic β-phase with fcc structure→lamellar X-phase with 14H structure, was observed at grain boundaries. During subsequent peak-aging treatment at 200 ℃ for 128 h, ellipsoidal β´ and rhombus β1 phases precipitated within α-Mg grains. Tensile tests at room temperature and Vickers hardness tests show that the alloy solution-treated and aging-treated has higher mechanical properties, i.e., σb=290.7 MPa, σs=162.5 MPa, δ=10.35% and 108.0 HV. The improvement of mechanical properties are attributed to the composite strengthening-and-toughening effect of the 14H-type LPSO structures, and the β´ and β1 aging phases.

Key wordsMg-Gd-Zn-Zr alloy    long period stacking ordered (LPSO) structure    lamellar    aging treatment
收稿日期: 2009-12-14     
基金资助:

国家自然科学基金项目50971089, 上海市基础研究重点(重大)项目08JC1412200和中国博士后科学基金项目20090460615资助

作者简介: 曾小勤, 男, 1975年生, 教授
[1] Ding W J, Wu Y J, Peng L M, Zeng X Q, Yuan G Y. J Mater Res, 2009; 24: 1842 [2] Wu Y J, Zeng X Q, Lin D L, Peng L M, Ding W J. J Alloys Compd, 2009; 447: 193 [3] Wu Y J, Lin D L, Zeng X Q, Peng L M, Ding W J. J Mater Sci, 2009; 44: 1607 [4] Wu Y J, Peng L M, Lin D L, Zeng X Q, Ding W J. J Mater Res, 2009; 24: 3596 [5] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M. Mater Sci Eng, 2005; A393: 269 [6] Amiya K, Ohsuna T, Inoue A. Mater Trans, 2003; 44: 2151 [7] Kawamura Y, Yamasaki M. Mater Trans, 2007; 48: 2986 [8] Yamasaki M, Anan T, Yoshimoto S, Kawamura Y. Scr Mater, 2005; 53: 799 [9] YamasakiM, SasakiM, Nishijima M, Hiraga K, Kawamura Y. Acta Mater, 2007; 55: 6798 [10] Abe E, Kawamura Y, Hayashi K, Inoue A. Acta Mater, 2002; 5: 3845 [11] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Mater Trans, 2001; 42: 1172 [12] Nishida M, Kawamura Y, Yamamuro T. Mater Sci Eng, 2004; A375–377: 1217 [13] Yoshimoto S, Yamasaki M, Kawamura Y. Mater Trans, 2006; 47: 959 [14] Itoi T, Seimiya T, Kawamura Y, Hirohashi M. Scr Mater, 2004; 51: 107 [15] Yamada K, Okubo Y, Shiono M, Shiono M, Watanabe H, Kamado S, Kojima Y. Mater Trans, 2006; 47: 1066 [16] Honma T, Ohkubo T, Kamado S, Hono K. Acta Mater, 2007; 55: 137 [17] Nishijima M, Hiraga K, Yamasaki M, Kawamura Y. Mater Trans, 2008; 49: 227 [18] Guo K X, Ye H Q, Wu Y K. Application of Electron Diffraction Patterns in Crystallography. Beijing: Science Press, 1983: 370 (郭可信, 叶恒强, 吴玉琨. 电子衍射图在晶体学中的应用. 北京: 科学出版社, 1983: 370) [19] Honma T, Ohkubo T, Hono K, Kamado S. Mater Sci Eng, 2005; A395: 301 [20] Nie J F, Muddle B C. Scr Mater, 1999; 40: 1089 [21] Nie J F, Muddle B C. Acta Mater, 2000; 48: 1691 [22] Nie J F, Gao X, Zhu S M. Scr Mater, 2005; 53: 1049 [23] Nie J F, Oh–ishi K, Gao X, Hono K. Acta Mater, 2008; 56: 6061 [24] Antion C, Donnadieu P, Perrard F, Deschamps A, Tassin C, Pisch A. Acta Mater, 2003; 51: 5335
[1] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[2] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[3] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[4] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.
[5] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[6] 刘奋军, 傅莉, 张纹源, 孟强, 董春林, 栾国红. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能[J]. 金属学报, 2015, 51(3): 281-288.
[7] 杨成功,单际国,任家烈. TiNi形状记忆合金激光焊接焊缝金属相变温度的控制[J]. 金属学报, 2013, 49(2): 199-206.
[8] 向红亮 范金春 刘东 顾兴. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 II. 耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096.
[9] 向红亮 范金春 刘东 郭培培. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.
[10] 胡本芙 刘国权 吴凯 胡鹏辉. 新型镍基粉末冶金高温合金中γ'相扇形组织形成以及演化行为研究[J]. 金属学报, 2012, 48(7): 830-836.
[11] 张金玲,冯芝勇,胡兰青,王社斌,许并社. 不同La含量AZ91合金的时效硬化行为[J]. 金属学报, 2012, 48(5): 607-614.
[12] 王学敏; 周桂峰 . 不同Cu含量超低碳钢的时效行为[J]. 金属学报, 2000, 36(2): 113-119 .
[13] 袁晓光; 崔成松 . 时效处理微晶(2024Al)—20Si—5Fe合金的组织及性能[J]. 金属学报, 1999, 35(5): 482-486 .
[14] 焦育宁;刘清民;杨院生;葛云龙;胡壮麒. 电磁流体流动对Al-Al_2Cu共晶形态的影响[J]. 金属学报, 1994, 30(6): 286-288.